cerebras.modelzoo.data.vision.diffusion.DiffusionBaseProcessor.DiffusionBaseProcessor#
- class cerebras.modelzoo.data.vision.diffusion.DiffusionBaseProcessor.DiffusionBaseProcessor[source]#
- Bases: - object- Methods - check_split_valid- Dataloader returns a dict with keys: - create_dataset- custom_collate_fn- process_transform- create_dataloader(dataset, is_training=False)[source]#
- Dataloader returns a dict with keys:
- “input”: Tensor of shape (batch_size, latent_channels, latent_height, latent_width) “label”: Tensor of shape (batch_size, ) with dropout applied with label_dropout_rate “diffusion_noise”: Tensor of shape (batch_size, latent_channels, latent_height, latent_width) - represents diffusion noise to be applied - “timestep”: Tensor of shape (batch_size, ) that
- indicates the timesteps for each diffusion sample