cerebras.modelzoo.data.vision.classification.mixup.RandomCutmix#
- class cerebras.modelzoo.data.vision.classification.mixup.RandomCutmix[source]#
- Bases: - torch.nn.Module- Randomly apply Cutmix to the provided batch and targets. The class implements the data augmentations as described in the paper “CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features”. :param num_classes: number of classes used for one-hot encoding. :type num_classes: int :param p: probability of the batch being transformed. Default value is 0.5. :type p: float :param alpha: hyperparameter of the Beta distribution used for cutmix. - Default value is 1.0. - Parameters
- inplace (bool) – boolean to make this transform inplace. Default set to False. 
 - Methods - param batch
- Float tensor of size (B, C, H, W) 
 - forward(batch, target)[source]#
- Parameters
- batch (Tensor) – Float tensor of size (B, C, H, W) 
- target (Tensor) – Integer tensor of size (B, ) 
 
- Returns
- Randomly transformed batch. 
- Return type
- Tensor 
 
 - __call__(*args: Any, **kwargs: Any) Any#
- Call self as a function. 
 - static __new__(cls, *args: Any, **kwargs: Any) Any#