cerebras.modelzoo.data.vision.masked_auto_encoding.ImageNet21KMAEProcessor.ImageNet21KMAEProcessorConfig#
- class cerebras.modelzoo.data.vision.masked_auto_encoding.ImageNet21KMAEProcessor.ImageNet21KMAEProcessorConfig(*args, **kwargs)[source]#
Bases:
cerebras.modelzoo.data.vision.masked_auto_encoding.MAEProcessor.MAEProcessorConfig
,cerebras.modelzoo.data.vision.classification.data.imagenet21k.ImageNet21KProcessorConfig
Methods
check_for_deprecated_fields
check_literal_discriminator_field
copy
get_orig_class
get_orig_class_args
model_copy
model_post_init
post_init
Attributes
batch_size
Global batch size for the dataloader
cutmix_alpha
Alpha parameter for the cutmix transform.
data_dir
The path to the data
discriminator
discriminator_value
drop_last
Similar to the PyTorch drop_last setting except that samples that when set to True, samples that would have been dropped at the end of one epoch are yielded at the start of the next epoch so that there is no data loss.
fp16_type
image_channels
image_size
The size of the images in the dataset
mask_ratio
mixed_precision
mixup_alpha
Alpha parameter for the mixup transform.
model_config
noaugment
Indicates to skip augmentation as part of preprocessing.
num_classes
The number of classification classes in the dataset
num_workers
How many subprocesses to use for data loading
patch_size
persistent_workers
Whether or not to keep workers persistent between epochs.
prefetch_factor
Number of batches loaded in advance by each worker
ra_sampler_num_repeat
Number of repeats for Repeated Augmentation sampler.
sampler
Type of data sampler to use
shuffle
Whether or not to shuffle the dataset.
shuffle_seed
The seed used for deterministic shuffling.
split
Dataset split.
transforms
List of transforms for preprocessing
use_fake_data
use_worker_cache
data_processor