cerebras.modelzoo.data.vision.classification.data.imagenet.ImageNet1KProcessorConfig#

class cerebras.modelzoo.data.vision.classification.data.imagenet.ImageNet1KProcessorConfig(*args, **kwargs)[source]#

Bases: cerebras.modelzoo.data.vision.classification.dataset_factory.VisionClassificationProcessorConfig

Methods

check_for_deprecated_fields

check_literal_discriminator_field

copy

get_orig_class

get_orig_class_args

model_copy

model_post_init

post_init

Attributes

batch_size

Global batch size for the dataloader

cutmix_alpha

Alpha parameter for the cutmix transform.

data_dir

The path to the data

discriminator

discriminator_value

drop_last

Similar to the PyTorch drop_last setting except that samples that when set to True, samples that would have been dropped at the end of one epoch are yielded at the start of the next epoch so that there is no data loss.

fp16_type

image_size

The size of the images in the dataset

mixed_precision

mixup_alpha

Alpha parameter for the mixup transform.

model_config

noaugment

Indicates to skip augmentation as part of preprocessing.

num_classes

The number of classification classes in the dataset

num_workers

How many subprocesses to use for data loading

persistent_workers

Whether or not to keep workers persistent between epochs.

prefetch_factor

Number of batches loaded in advance by each worker

ra_sampler_num_repeat

Number of repeats for Repeated Augmentation sampler.

sampler

Type of data sampler to use

shuffle

Whether or not to shuffle the dataset.

shuffle_seed

The seed used for deterministic shuffling.

split

Dataset split.

transforms

List of transforms for preprocessing

use_fake_data

use_worker_cache

data_processor

split = 'train'#

Dataset split.