cerebras.modelzoo.data.nlp.gpt.InferenceDataProcessor.InferenceDataProcessorGU#
- class cerebras.modelzoo.data.nlp.gpt.InferenceDataProcessor.InferenceDataProcessorGU(params, samples_file_list, dataset_size, max_input_len, inf_start_token=None, stop_sequence_shape=None)[source]#
Bases:
cerebras.modelzoo.data.nlp.gpt.InferenceDataProcessor.InferenceDataProcessor
Subclass for processing EEH generate_until requests.
Methods
Classmethod to create the dataloader object.
from_request_type
Preprocess raw text requests as fetched from EEH script into data samples consumable by GPT2 model and dump these to numpy file.
- create_dataloader()#
Classmethod to create the dataloader object.
- static gen_data_samples(requests, batch_size, max_sequence_length, tokenizer, samples_saver, request_type, max_input_len=0, inf_start_token=None, max_gen_tokens=None, stop_words_cache=None, stop_sequence_shape=None)#
Preprocess raw text requests as fetched from EEH script into data samples consumable by GPT2 model and dump these to numpy file.
- Parameters
requests (List) – List of EEH’s Instance dataclass objects holding raw text data
batch_size (int) – The batch size
max_sequence_length (int) – The maximum length of each sample
tokenizer (transformers.PreTrainedTokenizerBase) – The tokenizer used to tokenize raw text data
samples_saver (cerebras.modelzoo.common.utils.input.utils.SamplesSaver) – SamplesSaver object to manage the saving of data samples to file.
request_type (cerebras.modelzoo.data.nlp.gpt.InferenceDataProcessor.RequestType) – The type of request for which the data sample is to be created
max_input_len (int) – The maximum length of the tokenized input
inf_start_token (Optional[int]) – (generative tasks-only) int representing the start token for generative inference
max_gen_tokens (Optional[int]) – (generative tasks-only) The max number of tokens to generate
stop_words_cache (Optional[Dict[str, List[List[int]]]]) – (generative tasks-only) dict to cache the tokenized stop sequences
stop_sequence_shape (Optional[Tuple[int, int]]) – (generative tasks-only) tuple to cache the (num_stop_sequences, max_stop_seq_len)
- Returns
(List[str], int, tuple) tuple of - list of file paths where the samples are dumped; - int representing the size of the dataset (total no. of samples; - dict of request and dataset metadata needed for EEH postprocessing.
- Return type
Tuple[List[str], int, List[Dict[str, Any]]]