modelzoo.common.pytorch.layers.TransformerDecoderLayer

modelzoo.common.pytorch.layers.TransformerDecoderLayer

import path: modelzoo.common.pytorch.layers.TransformerDecoderLayer

TransformerDecoderLayer (d_model, nhead, dim_feedforward=2048, dropout=0.1, activation=”gelu, layer_norm_eps=1e-05, batch_first=True, norm_first=False, device=None, add_cross_attention=True, attention_dropout_rate=None, attention_type=”scaled_dot_product”, use_projection_bias_in_attention=False, use_ffn_bias_in_attention=False, use_ffn_bias=False, attention_initializer=”xavier_uniform”, ffn_initializer=”xavier_uniform”):

  • d_model: the number of expected features in the input (required).

  • nhead: the number of heads in the multihead attention models (required).

  • dim_feedforward: the dimension of the feedforward network model (default=2048).

  • dropout: the dropout value (default=0.1).

  • activation: the activation function of the intermediate layer, can be a string (“relu” or “gelu”) or a unary callable. Default: gelu

  • layer_norm_eps: the eps value in layer normalization components (default=1e-5).

  • batch_first: If True, then the input and output tensors are provided as (batch, seq, feature). Default: False (seq, batch, feature). We only support batch_first = True now.

  • norm_first: if True, layer norm is done prior to attention and feedforward operations, respectively. Otherwise it’s done after. Default: False (after).

  • attention_dropout_rate: Attention dropout rate. If None, defaults to dropout.

  • use_projection_bias_in_attention: Add bias to Q, K, V projections in the Attention layer. Defaults to False.

  • device – The device to use for models parameters.

  • add_cross_attention – If True, adds cross-attention layer between encoder/decoder; otherwise, only self-attention is used in the decoder (GPT-style models should set to False)

  • attention_type: Should be in [scaled_dot_product, dot_product]

  • add_cross_attention: If True, adds cross-attention layer between encoder/decoder, otherwise, only self-attention is used in the decoder (GPT-style models should set to False)

  • use_ffn_bias_in_attention: Add bias in the concluding FFN in the Attention layer. Defaults to False.

  • use_ffn_bias: Add bias in all dense layers of the decoder’s ffn sublayer

  • attention_initializer: Attention layer initializer. Defaults to xavier_uniform.

  • ffn_initializer: FFN layer initializer. Defaults to xavier_uniform.

forward (tgt=None, memory=None, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None, rotary_position_embedding_helper=None):

  • tgt: the sequence to the decoder layer (required). shape [batch_size, tgt_seq_length, embed_dim].

  • memory: the sequence from the last layer of the encoder (required). shape [batch_size, memory_length, embed_dim].

  • tgt_mask: the mask for the tgt sequence (optional). shape [tgt_seq_length, tgt_seq_length].

  • memory_mask: the mask for the memory sequence (optional). shape [memory_length, src_seq_length].

  • tgt_key_padding_mask: the mask for the tgt keys per batch (optional). shape [batch_size, tgt_seq_length].

  • memory_key_padding_mask: the mask for the memory keys per batch (optional). shape [batch_size, memory_length].

  • rotary_position_embedding_helper (RotaryPositionEmbeddingHelper): Helper to create rotary embeddings according to the paper RoFormer: Enhanced Transformer with Rotary Position Embedding