Thank you for your feedback!
Source code for cerebras.modelzoo.data_preparation.utils
# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import json
import numpy as np
import six
from keras_preprocessing.text import text_to_word_sequence
from cerebras.modelzoo.common.model_utils.count_lines import count_lines
[docs]def convert_to_unicode(text):
"""
Converts `text` to unicode, assuming utf-8 input
Returns text encoded in a way suitable for print or `tf.compat.v1.logging`
"""
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError(f"Unsupported string type: {type(text)}")
else:
raise ValueError(f"Not running Python3")
[docs]def count_total_documents(metadata_files):
"""
Counts total number of documents
in metadata_files.
:param str or list[str] metadata_files: Path or list of paths
to metadata files.
:returns: Number of documents whose paths are contained
in the metadata files.
"""
total_documents = 0
if isinstance(metadata_files, str):
metadata_files = [metadata_files]
for _file in metadata_files:
total_documents += count_lines(_file)
return total_documents
[docs]def whitespace_tokenize(text, lower=False):
"""
Splits a piece of text based on whitespace characters \t\r\n
"""
return text_to_word_sequence(text, filters='\t\n\r', lower=lower)
[docs]def get_output_type_shapes(
max_seq_length, max_predictions_per_seq, mlm_only=False
):
# process for output shapes and types
output = {
"input_ids": {
"output_type": "int32",
"shape": [max_seq_length],
},
"input_mask": {
"output_type": "int32",
"shape": [max_seq_length],
},
"masked_lm_positions": {
"output_type": "int32",
"shape": [max_predictions_per_seq],
},
"masked_lm_ids": {
"output_type": "int32",
"shape": [max_predictions_per_seq],
},
"masked_lm_weights": {
"output_type": "float32",
"shape": [max_predictions_per_seq],
},
}
if not mlm_only:
output["segment_ids"] = {
"output_type": "int32",
"shape": [max_seq_length],
}
return output
[docs]def pad_instance_to_max_seq_length(
instance,
mlm_only,
tokenizer,
max_seq_length,
max_predictions_per_seq,
output_type_shapes,
inverted_mask,
):
input_ids = tokenizer.convert_tokens_to_ids(instance.tokens)
input_mask = [1] * len(input_ids)
# initial assert to ensure wrong instances are not being
# generated from the function call
assert len(input_ids) <= max_seq_length
# extend above lists with length difference
length_diff = max_seq_length - len(input_ids)
extended_list = [0] * length_diff
input_ids.extend(extended_list)
input_mask.extend(extended_list)
# assertions to ensure correct output shapes
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
if not mlm_only:
segment_ids = list(instance.segment_ids)
segment_ids.extend(extended_list)
assert len(segment_ids) == max_seq_length
masked_lm_positions = list(instance.masked_lm_positions)
masked_lm_ids = tokenizer.convert_tokens_to_ids(instance.masked_lm_labels)
masked_lm_weights = [1.0] * len(masked_lm_ids)
# initial assert to ensure wrong instances are not being
# generated from the function call
assert len(masked_lm_positions) <= max_predictions_per_seq
# extend above lists with length difference
length_diff = max_predictions_per_seq - len(masked_lm_positions)
extended_list = [0] * length_diff
masked_lm_positions.extend(extended_list)
masked_lm_ids.extend(extended_list)
masked_lm_weights.extend(extended_list)
# assertions to ensure correct output shapes
assert len(masked_lm_positions) == max_predictions_per_seq
assert len(masked_lm_ids) == max_predictions_per_seq
assert len(masked_lm_weights) == max_predictions_per_seq
# create feature dict
features = dict()
features["input_ids"] = input_ids
features["input_mask"] = input_mask
features["masked_lm_positions"] = masked_lm_positions
features["masked_lm_ids"] = masked_lm_ids
features["masked_lm_weights"] = masked_lm_weights
if not mlm_only:
features["segment_ids"] = segment_ids
# get associated numpy types and convert to
# np.dtype using output_type_shapes
feature = {
k: getattr(np, output_type_shapes[k]["output_type"])(v)
for k, v in features.items()
}
# handling input mask switch
if inverted_mask:
feature["input_mask"] = np.equal(feature["input_mask"], 0).astype(
feature["input_mask"].dtype
)
if not mlm_only:
# get label for function
next_sentence_label = 1 if instance.is_random_next else 0
# int32 label always
label = np.int32(next_sentence_label)
else:
# Currently labels=None is not supported.
label = np.int32(np.empty(1)[0])
return feature, label
[docs]def text_to_tokenized_documents(
data,
tokenizer,
multiple_docs_in_single_file,
multiple_docs_separator,
single_sentence_per_line,
spacy_nlp,
):
"""
Convert the input data into tokens
:param str data: Contains data read from a text file
:param tokenizer: Tokenizer object which contains functions to
convert words to tokens
:param bool multiple_docs_in_single_file: Indicates whether there
are multiple documents in the given data string
:param str multiple_docs_separator: String used to separate documents
if there are multiple documents in data.
Separator can be anything. It can be a new blank line or
some special string like "-----" etc.
There can only be one separator string for all the documents.
:param bool single_sentence_per_line: Indicates whether the data contains
one sentence in each line
:param spacy_nlp: spaCy nlp module loaded with spacy.load()
Used in segmenting a string into sentences
:return List[List[List]] documents: Contains the tokens corresponding to
sentences in documents.
List of List of Lists [[[],[]], [[],[],[]]]
documents[i][j] -> List of tokens in document i and sentence j
"""
if "\\n" in multiple_docs_separator:
multiple_docs_separator = multiple_docs_separator.replace("\\n", "\n")
get_length = lambda input: sum([len(x) for x in input])
documents = []
num_tokens = 0
if multiple_docs_in_single_file:
# "\n" is added since seperator is always in newline
# <doc1>
# multiple_docs_separator
# <doc2>
data = data.split("\n" + multiple_docs_separator)
data = [x for x in data if x] # data[i] -> document i
else:
data = [data]
if single_sentence_per_line:
# The document has already been into sentences and each sentence is in a newline
for doc in data:
documents.append([])
# Get sentences by splitting on newline, since each new sentence is in a newline
lines = doc.split("\n")
for line in lines:
if line:
tokens = tokenizer.tokenize(
line.strip()
) # tokens : list of tokens
if tokens:
documents[-1].append(tokens)
num_tokens += len(tokens)
else:
# The document should be segmented into sentences with a spacy_model
for doc in data:
processed_doc = spacy_nlp(convert_to_unicode(doc.replace('\n', '')))
sentences = [
tokenizer.tokenize(s.text) for s in list(processed_doc.sents)
]
sentences = [
s for s in sentences if s
] # sentences[i][j] -> token j of sentence i
documents.append(sentences)
num_tokens += get_length(sentences)
# documents[i][j] -> list of tokens of sentence j in document i
# Remove empty documents if any
documents = [x for x in documents if x]
return documents, num_tokens
maskedLmInstance = collections.namedtuple(
"maskedLmInstance", ["index", "label"]
)
[docs]def create_masked_lm_predictions(
tokens,
vocab_words,
mask_whole_word,
max_predictions_per_seq,
masked_lm_prob,
rng,
exclude_from_masking=None,
):
"""
Creates the predictions for the masked LM objective
:param list tokens: List of tokens to process
:param list vocab_words: List of all words present in the vocabulary
:param bool mask_whole_word: If true, mask all the subtokens of a word
:param int max_predictions_per_seq: Maximum number of masked LM predictions per sequence
:param float masked_lm_prob: Masked LM probability
:param rng: random.Random object with shuffle function
:param Optional[list] exclude_from_masking: List of tokens to exclude from masking. Defaults to ["[CLS]", "[SEP]"]
:returns: tuple of tokens which include masked tokens,
the corresponding positions for the masked tokens
and also the corresponding labels for training
"""
if exclude_from_masking is not None:
if not isinstance(exclude_from_masking, list):
exclude_from_masking = list(exclude_from_masking)
else:
exclude_from_masking = ["[CLS]", "[SEP]"]
cand_indexes = []
for i, token in enumerate(tokens):
if token in exclude_from_masking:
continue
# Whole word masking means that if we mask all of the wordpieces
# corresponding to an original word. When a word has been split
# into WordPieces, the first token does not have any marker and
# any subsequences tokens are prefixed with ##. So whenever we see
# the ## token, we append it to the previous set of word indexes.
# Note that whole word masking does not change the training code
# at all -- we still predict each WordPiece independently,
# softmaxed over the entire vocabulary
if (
mask_whole_word
and len(cand_indexes) >= 1
and token.startswith("##")
):
cand_indexes[-1].append(i)
else:
cand_indexes.append([i])
rng.shuffle(cand_indexes)
output_tokens = list(tokens)
# get number of tokens to mask and predict
num_to_predict = min(
max_predictions_per_seq,
max(1, int(round(len(tokens) * masked_lm_prob))),
)
masked_lms = []
covered_indexes = set()
for index_set in cand_indexes:
if len(masked_lms) >= num_to_predict:
break
# if adding a whole-word mask would exceed the maximum number of
# predictions, then just skip this candidate
if len(masked_lms) + len(index_set) > num_to_predict:
continue
# Check if any index is covered already.
is_any_index_covered = False
for index in index_set:
if index in covered_indexes:
is_any_index_covered = True
break
if is_any_index_covered:
continue
for index in index_set:
covered_indexes.add(index)
# splits comes from
# google-research/bert/create_pretraining_data.py
masked_token = None
random_value = rng.random()
if random_value < 0.8:
# 80% of times, replace with [MASK]
masked_token = "[MASK]"
else:
# 10% of the time, keep the original token
if rng.random() < 0.5:
masked_token = tokens[index]
# 10 % of times, replace with random word
else:
masked_token = vocab_words[
rng.randint(0, len(vocab_words) - 1)
]
output_tokens[index] = masked_token
masked_lms.append(
maskedLmInstance(index=index, label=tokens[index])
)
assert len(masked_lms) <= num_to_predict
masked_lms = sorted(masked_lms, key=lambda x: x.index)
masked_lm_positions = []
masked_lm_labels = []
# create final masked_lm_positions, masked_lm_labels
for p in masked_lms:
masked_lm_positions.append(p.index)
masked_lm_labels.append(p.label)
return (output_tokens, masked_lm_positions, masked_lm_labels)
[docs]def get_label_id_map(label_vocab_file):
"""
Load the label-id mapping: Mapping between output labels and id
:param str label_vocab_file: Path to the label vocab file
"""
label_map = None
if label_vocab_file is not None:
with open(label_vocab_file, 'r') as fh:
label_map = json.load(fh)
return label_map
[docs]def convert_str_to_int_list(s):
"""
Converts a string (e.g. from parsing CSV) of the form
"[1, 5, 7, 2]"
to a list of integers.
"""
assert s.startswith("[")
assert s.endswith("]")
x = s.strip("[]")
x = x.split(",")
return [int(y.strip()) for y in x]
[docs]def pad_input_sequence(input_sequence, padding=0, max_sequence_length=512):
input_sequence_array = padding * np.ones(
max_sequence_length, dtype=np.int32
)
end_idx = min(max_sequence_length, len(input_sequence))
input_sequence_array[:end_idx] = list(input_sequence[:end_idx])
return input_sequence_array
[docs]def get_files_in_metadata(metadata_filepaths):
"""
Function to read the files in metadata file
provided as input to data generation scripts.
:param metadata_filepaths: path/s to metadata files
:returns List input_files: Contents of
metadata files.
"""
if isinstance(metadata_filepaths, str):
metadata_filepaths = [metadata_filepaths]
input_files = []
for _file in metadata_filepaths:
with open(_file, "r") as _fin:
input_files.extend(_fin.readlines())
input_files = [x.strip() for x in input_files if x]
return input_files
[docs]def split_list(l, n):
"""
Splits list/string into n sized chunks.
:param List[str] l: List or string to split.
:param int n: Number of chunks to split to.
:returns List[List]: List of lists
containing split list/string.
"""
return [l[i : i + n] for i in range(0, len(l), n)]
[docs]def get_vocab(vocab_file_path, do_lower):
"""
Function to generate vocab from provided
vocab_file_path.
:param str vocab_file_path: Path to vocab file
:param bool do_lower: If True, convert vocab words to
lower case.
:returns List[str]: list containing vocab words.
"""
vocab = []
with open(vocab_file_path, 'r') as reader:
for line in reader:
token = convert_to_unicode(line)
if not token:
break
token = token.strip()
vocab.append(token)
vocab = list(map(lambda token: token.lower(), vocab)) if do_lower else vocab
return vocab
Was this information helpful?
Thank you for your feedback!
- NO
- YES
Cancel
Submit