Thank you for your feedback!
Source code for cerebras.modelzoo.data_preparation.nlp.slimpajama.dedup.generate_connected_components
# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import pickle
import time
from glob import glob
import networkit as nk
import tqdm
[docs]def construct_graph(set_of_duplicate_pairs):
G = nk.Graph()
mapper = {}
for pair in tqdm.tqdm(set_of_duplicate_pairs):
node1_name, node2_name = pair
if node1_name not in mapper:
mapper[node1_name] = G.addNode()
if node2_name not in mapper:
mapper[node2_name] = G.addNode()
G.addEdge(mapper[node1_name], mapper[node2_name])
return G, mapper
[docs]def find_connected_components(G):
cc = nk.components.ConnectedComponents(G)
cc.run()
return cc.getComponents(), cc.numberOfComponents()
[docs]def generate_connected_components_mp(args):
files = glob(f"{args.input_dir}/*")
start = time.time()
print("Started graph building")
# load pickled duplicate pairs
set_of_duplicate_pairs = set()
for fp in files:
with open(fp, "r") as f:
for line in tqdm.tqdm(f):
pair = tuple(line.strip().split(" :: "))
if pair[0] != pair[1]:
set_of_duplicate_pairs.add(pair)
print(
"length of the set of duplicates:",
len(set_of_duplicate_pairs),
time.time() - start,
)
# generate a graph using id's as nodes and a pair of ids as an edge
nk.setNumberOfThreads(60)
G, mapper = construct_graph(set_of_duplicate_pairs)
components, n_components = find_connected_components(G)
print("number of connected components:", n_components, time.time() - start)
reversed_mapper = {value: key for key, value in mapper.items()}
# dump pickled cc on disk and load if needed
with open(args.out_file, "wb") as fout:
pickle.dump((components, n_components, reversed_mapper), fout)
print("Graph generated duplicates list!!!", time.time() - start)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--input_dir")
parser.add_argument("--out_file")
args = parser.parse_args()
generate_connected_components_mp(args)
Was this information helpful?
Thank you for your feedback!
- NO
- YES
Cancel
Submit