Thank you for your feedback!
Source code for cerebras.modelzoo.data_preparation.nlp.bert.parser_utils
# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
[docs]def add_common_parser_args(parser):
parser.add_argument(
"--metadata_files",
type=str,
required=True,
nargs='+',
help="path to text file containing a list of file names "
"corresponding to the raw input documents to be "
"processed and stored; can handle multiple metadata files "
"separated by space",
)
parser.add_argument(
"--multiple_docs_in_single_file",
action="store_true",
help="Pass this flag when a single text file contains multiple"
" documents separated by <multiple_docs_separator>",
)
parser.add_argument(
"--multiple_docs_separator",
type=str,
default="\n",
help="String which separates multiple documents in a single text file. "
"If newline character, pass \\n"
"There can only be one separator string for all the documents.",
)
parser.add_argument(
"--single_sentence_per_line",
action="store_true",
help="Pass this flag when the document is already split into sentences with"
"one sentence in each line and there is no requirement for "
"further sentence segmentation of a document ",
)
parser.add_argument(
'--input_files_prefix',
type=str,
default="",
help='prefix to be added to paths of the input files. '
'For example, can be a directory where raw data is stored '
'if the paths are relative',
)
parser.add_argument(
"--vocab_file", type=str, required=True, help="path to vocabulary"
)
parser.add_argument(
"--split_num",
type=int,
default=1000,
help="number of input files to read at a given time for processing. "
"Defaults to 1000.",
)
parser.add_argument(
"--do_lower_case",
action="store_true",
help="pass this flag to lower case the input text; should be "
"True for uncased models and False for cased models",
)
parser.add_argument(
"--max_seq_length",
type=int,
default=128,
help="maximum sequence length",
)
parser.add_argument(
"--short_seq_prob",
type=float,
default=0.1,
help="probability of creating sequences which are shorter "
"than the maximum sequence length",
)
parser.add_argument(
"--min_short_seq_length",
type=int,
default=None,
help="The minimum number of tokens to be present in an example"
"if short sequence probability > 0."
"If None, defaults to 2 "
"Allowed values are [2, max_seq_length - 3)",
)
parser.add_argument(
"--masked_lm_prob",
type=float,
default=0.15,
help="masked LM probability",
)
parser.add_argument(
"--max_predictions_per_seq",
type=int,
default=20,
help="maximum number of masked LM predictions per sequence",
)
parser.add_argument(
"--spacy_model",
type=str,
default="en_core_web_sm",
help="spaCy model to load, i.e. shortcut link, package name or path.",
)
parser.add_argument(
"--mask_whole_word",
action="store_true",
help="whether to use whole word masking rather than per-WordPiece "
"masking.",
)
parser.add_argument(
"--output_dir",
type=str,
default=None,
help="directory where HDF5 files will be stored.",
)
parser.add_argument(
"--num_output_files",
type=int,
default=10,
help="number of output files in total i.e each process writes num_output_files//num_processes number of files"
"Defaults to 10.",
)
parser.add_argument(
"--name",
type=str,
default="preprocessed_data",
help="name of the dataset; i.e. prefix to use for hdf5 file names. "
"Defaults to 'preprocessed_data'.",
)
parser.add_argument(
"--seed",
type=int,
default=0,
help="random seed. Defaults to 0.",
)
parser.add_argument(
"--num_processes",
type=int,
default=0,
help="Number of parallel processes to use, defaults to cpu count",
)
return parser
[docs]def add_mlm_only_specific_args(parser):
parser = add_common_parser_args(parser)
parser.add_argument(
"--overlap_size",
type=int,
default=None,
help="overlap size for generating sequences from buffered data for mlm only sequences"
"Defaults to None, which sets the overlap to max_seq_len/4.",
)
parser.add_argument(
"--buffer_size",
type=int,
default=1e6,
help="buffer_size number of elements to be processed at a time",
)
parser.add_argument(
"--allow_cross_document_examples",
action="store_true",
help="Pass this flag when examples can cross document boundaries",
)
parser.add_argument(
"--document_separator_token",
type=str,
default="[SEP]",
help="If examples can span documents, "
"use this separator to indicate separate tokens of current and next document",
)
# This is a suppressed argument that will not show in --help.
# Users MUST NOT specify this arg. It is used to switch between the two modes
# defined to generate HDF5 files.
parser.add_argument(
'--__mode', default="mlm_only", help=argparse.SUPPRESS, required=False
)
return parser
[docs]def add_mlm_nsp_specific_args(parser):
parser = add_common_parser_args(parser)
# This is a suppressed argument that will not show in --help.
# Users MUST NOT specify this arg. It is used to switch between the two modes
# defined to generate HDF5 files.
parser.add_argument(
'--__mode', default="mlm_nsp", help=argparse.SUPPRESS, required=False
)
return parser
[docs]def create_arg_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
subparsers = parser.add_subparsers()
mlm_subparser = subparsers.add_parser("mlm_only")
mlm_subparser = add_mlm_only_specific_args(mlm_subparser)
mlm_nsp_subparser = subparsers.add_parser("mlm_nsp")
mlm_nsp_subparser = add_mlm_nsp_specific_args(mlm_nsp_subparser)
return parser
Was this information helpful?
Thank you for your feedback!
- NO
- YES
Cancel
Submit