cerebras.modelzoo.data_preparation.raw_dataset_processor.config.RawDatasetProcessorConfig#
- class cerebras.modelzoo.data_preparation.raw_dataset_processor.config.RawDatasetProcessorConfig(batch_size: int = <object object at 0x7f9345f8db90>, shuffle: bool = True, shuffle_seed: int = 0, num_workers: int = 0, prefetch_factor: int = 10, persistent_workers: bool = True, preprocessing: Optional[dict] = None, drop_last: bool = True, seed: Optional[int] = None)[source]#
- preprocessing: Optional[dict] = None#
- drop_last: bool = True#
- prefetch_factor: int = 10#
The number of batches to prefetch in the dataloader
- persistent_workers: bool = True#
Whether or not to keep workers persistent between epochs
- seed: Optional[int] = None#
- batch_size: int = <object object>#
Batch size to be used
- num_workers: int = 0#
The number of PyTorch processes used in the dataloader
- shuffle: bool = True#
Whether or not to shuffle the dataset
- shuffle_seed: int = 0#
Seed used for deterministic shuffling