# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import copy
import inspect
import json
import logging
import os
import pickle
import re
from abc import ABC, abstractmethod
from collections import OrderedDict
from dataclasses import dataclass
from pathlib import Path
from typing import Callable, List, Optional, Tuple, Type, Union
import torch
import yaml
from tqdm import tqdm
from cerebras.modelzoo.tools.checkpoint_converters.streaming_checkpoints import (
OnDemandDictionaryConverter,
StreamingCSWriter,
StreamingShardedHFReader,
StreamingShardedHFWriter,
)
[docs]class EquivalentSubkey:
r"""EquivalentSubkey defines the bidirectional relationship between subkeys of a model's
checkpoint. This class is simply a 2-tuple with index bounds checking.
For example if the normalization layer in one model is named "norm" and "ln" in the other,
the relationship can be represented as EquivalentSubkey("norm", "ln").
"""
def __init__(self, a: str, b: str) -> None:
self.keys = [a, b]
def __getitem__(self, idx: int) -> str:
assert (
idx == 0 or idx == 1
), "Invalid index into EquivalentSubkey object: {}".format(idx)
return self.keys[idx]
def __setitem__(self, idx: int, value) -> str:
assert (
idx == 0 or idx == 1
), "Invalid index into EquivalentSubkey object: {}".format(idx)
self.keys[idx] = value
def __repr__(self) -> str:
return "EquivalentSubkey(\"{}\", \"{}\")".format(*self.keys)
[docs]class ConversionRule:
r"""ConversionRule defines a "rule" which:
1. a key can be matched against
2. procedure for converting this old key to a new one upon a successful match
3. and an action to be taken once the new key is created (ex: updating the
state dictionary).
A rule consists of a sequence of regex pattern (supplied as a string),
EquivalentSubkey object, and (possibly) a BaseDictionaryConverter as long as this
object is last in the sequence. It also contains an "exists" argument which
can be set to "left", "both", or "right". The "left" and "right" arguments
are used to describe if a key exists in one checkpoint format but not the
other and should be ignored. Without this behavior, keys that exist in one
but not the other wouldn't be matched by any conversion rules, causing a failure
as drop_unmatched_keys is disabled by default.
Example:
The following describes the conversion rule for mapping HF's layer normalization
key to CS layer normalization in the GPT2 model.
>>> ConversionRule(
>>> [
>>> EquivalentSubkey("h", "transformer_decoder.layers"),
>>> "\.\d+\.",
>>> EquivalentSubkey("ln_1", "norm1"),
>>> "\.(weight|bias)",
>>> ],
>>> action=BaseCheckpointConverter.replaceKey,
>>> )
This should be interpreted as:
1. HF uses 'h' to represent the decoder name while CS uses 'transformer_decoder.layers'
2. Both will have keys that follow with a dot, the decoder number, and then another dot
3. HF uses 'ln_1' for the first layer norm while CS names it 'norm1'
4. Both will have keys that follow with a dot and then either weight or bias
This representation should make it easy to see how we can 1) build a regex which
matches against old keys, and 2) use the matched result & EquivalentSubkey information
to create a new key. Finally, once the new key is constructed the conversion rule
will apply the 'action' described by the user in order to complete the conversion
(in this case simply copying the value at old_state's old key into the new_state at the
new key).
As previously mentioned, a conversion rule object can also contain a checkpoint
converter at the end of the sequence. This is used to create a new checkpoint
converter which uses another converter to handle a portion of the conversion.
Doing so reduces the amount of copy & pasted conversion rules. For example,
many models have base model classes which are extended with additional layers
for fine-tuning. For example, HF's GP2Model doesn't contain a language model head
while GP2LMHeadModel does. Rather than copying the conversion rules, we could
instead define a new checkpoint converter as follows:
>>> class Converter_GPT2LMHeadModel_HF_CS17(BaseDictionaryConverter):
>>> def __init__(self):
>>> super().__init__()
>>> self.rules = [
>>> ConversionRule(
>>> ["lm_head\.(weight|bias)"],
>>> action=BaseCheckpointConverter.replaceKey,
>>> ),
>>> ConversionRule(
>>> [
>>> EquivalentSubkey("transformer.", ""),
>>> Converter_GPT2Model_HF_CS17(),
>>> ],
>>> action=None,
>>> ),
>>> ]
The first rule simply notates that the lm_head key now exists (and is named
the same in both models). The second rule notates that if the "transformer."
prefix is encountered, we should try all of the GPT2Model HF -> CS 1.7
conversion rules.
"""
def __init__(
self,
segments: List[Union[str, EquivalentSubkey, BaseDictionaryConverter]],
exists: str = "both",
action: Optional[
Callable[[str, OrderedDict, str, OrderedDict, int], None]
] = None,
) -> None:
assert isinstance(segments, list), "Expected segments to be list"
for elm in segments:
assert isinstance(
elm, (str, EquivalentSubkey, BaseDictionaryConverter)
), f"ConversionRule segment doesn't support type {type(elm)}"
assert exists in ["left", "both", "right"]
self.segments = segments
self.exists = exists
self.action = action
self.validate_segments()
def __repr__(self) -> str:
single_line = len(self.segments) < 2
out = "ConversionRule(["
if not single_line:
out += "\n"
for i in range(len(self.segments)):
mod_str = repr(self.segments[i])
if not single_line:
mod_str = _addindent(mod_str, 4) + ",\n"
out += mod_str
action_name = "self." + self.action.__name__ if self.action else "None"
out += "], action={})".format(action_name)
return out
@staticmethod
def segment_is_converter(
elm: Union[str, EquivalentSubkey, BaseDictionaryConverter]
) -> bool:
return isinstance(elm, BaseDictionaryConverter)
def validate_segments(self):
for seg in self.segments:
if isinstance(seg, str):
pattern = re.compile(seg)
assert (
pattern.groups == 0
), "The following regex isn't supported: {}\n\
Compile rule's regex cannot contain capture groups.\n\
Use (?:a|b) instead of (a|b)".format(
seg
)
def convert_key(
self,
old_key: str,
old_state_dict: OrderedDict,
new_state_dict: OrderedDict,
from_index: int,
match_start: int = 0,
prefix: str = "",
action_fn_args: Optional[dict] = None,
debug: bool = False,
) -> bool:
regex_str = ""
maybe_escape = lambda elm, idx: (
re.escape(elm[idx]) if isinstance(elm, EquivalentSubkey) else elm
)
regex_str = ""
chained_converter = ConversionRule.segment_is_converter(
self.segments[-1]
)
candidate_segments = len(self.segments)
if chained_converter:
candidate_segments -= 1
for i in range(candidate_segments):
elm = self.segments[i]
assert not ConversionRule.segment_is_converter(
elm
), "Checkpoint convert objects can only be placed at the end of rules"
regex_str += "({})".format(maybe_escape(elm, from_index))
pattern = re.compile(regex_str)
match_result = (
pattern.fullmatch(old_key, match_start)
if not chained_converter
else pattern.match(old_key, match_start)
)
if match_result is None:
return False
converted = prefix
to_index = 1 - from_index
for i in range(candidate_segments):
if isinstance(self.segments[i], EquivalentSubkey):
converted += self.segments[i][to_index]
else:
converted += match_result.group(
i + 1
) # Index 0 always contains full match
if chained_converter:
converter = self.segments[-1]
return converter.convert_key(
old_key,
old_state_dict,
new_state_dict,
from_index,
match_start=match_result.span()[1],
prefix=converted,
action_fn_args=action_fn_args,
debug=debug,
)
else:
if debug:
print(
"Matched {} -> {} action: {}".format(
old_key,
converted,
self.action.__name__ if self.action else "None",
)
)
if self.action:
self.action(
old_key,
converted,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
)
return True
def exists_in_index(self, to_index: int) -> bool:
return (
self.exists == "both"
or (self.exists == "left" and to_index == 0)
or (self.exists == "right" and to_index == 1)
)
[docs]class BaseDictionaryConverter(ABC):
r"""A dictionary converter represents a pair of two dictionary formats that
can be converted between each other. The converter object defines a list
of conversion rules which should be applied when converting one dict
format to the other (and vice-versa).
In order to make your own dictionary converter, simply:
1. Create a new converter class which inherits from BaseDictionaryConverter
2. Supply a list of conversion rules (self.rules)
3. Override the pre_model_convert or post_model_convert hooks if you
need to execute arbitrary behavior before/after the conversion.
"""
def __init__(self, pbar_desc=None):
self.pbar_desc = pbar_desc
def __repr__(self) -> str:
out = "BaseDictionaryConverter([\n"
for i in range(len(self.rules)):
out += _addindent(repr(self.rules[i]), 4) + ",\n"
out += "])"
return out
@staticmethod
@abstractmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
pass
@classmethod
def supports_conversion(cls, src_fmt, tgt_fmt):
return cls.get_converter_indices(src_fmt, tgt_fmt) is not None
@classmethod
def get_converter_indices(cls, src_fmt, tgt_fmt):
formats = cls.formats()
assert (
formats is not None
), "Class {} hasn't provided formats() which is required.".format(
cls.__name__
)
if src_fmt in formats[0] and tgt_fmt in formats[1]:
return FormatIndices(
direction=0,
src_index=formats[0].index(src_fmt),
tgt_index=formats[1].index(tgt_fmt),
)
elif src_fmt in formats[1] and tgt_fmt in formats[0]:
return FormatIndices(
direction=1,
src_index=formats[1].index(src_fmt),
tgt_index=formats[0].index(tgt_fmt),
)
else:
return None
[docs] @staticmethod
def replaceKey(
old_key: str,
new_key: str,
old_state_dict: OrderedDict,
new_state_dict: OrderedDict,
from_index: int,
action_fn_args: Optional[dict] = None,
) -> None:
r"""
Copies value that exists at old_state_dict's old_key to new_state_dict's
new_key.
"""
new_state_dict[new_key] = old_state_dict[old_key]
[docs] def convert_key(
self,
old_key: str,
old_state_dict: OrderedDict,
new_state_dict: OrderedDict,
from_index: int,
match_start: int = 0,
prefix: str = "",
action_fn_args: Optional[dict] = None,
debug: bool = False,
) -> None:
r"""
Attempts to convert the old key by matching against the list of
conversion rules. The first rule to match is used for conversion (i.e.
even if multiple rules *would* match, the latter ones are never used).
Returns True if a conversion occurred.
"""
assert hasattr(
self, "rules"
), "Converter must have a list of conversion rules"
for rule in self.rules:
did_convert = rule.convert_key(
old_key,
old_state_dict,
new_state_dict,
from_index,
match_start,
prefix,
action_fn_args,
debug=debug,
)
if did_convert:
return True
return False
def convert_all_keys(
self,
old_state_dict: OrderedDict,
new_state_dict: OrderedDict,
from_index: int,
action_fn_args: Optional[dict] = None,
no_progress_bar: bool = True,
debug: bool = False,
suppress_unmatched_key_warning: bool = False,
):
if not no_progress_bar:
pbar = tqdm(total=len(old_state_dict), desc=self.pbar_desc)
matched_all_keys = True
for key in old_state_dict.keys():
matched_current_key = self.convert_key(
key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args=action_fn_args,
debug=debug,
)
if not matched_current_key and not suppress_unmatched_key_warning:
logging.warning("Key not matched: {}".format(key))
if not no_progress_bar:
pbar.update(1)
matched_all_keys = matched_all_keys and matched_current_key
return matched_all_keys
[docs]class BaseCheckpointConverter(BaseDictionaryConverter, ABC):
r"""Converts between checkpoint state_dict formats."""
def __init__(self):
super().__init__(pbar_desc="Converting Checkpoint")
@staticmethod
@abstractmethod
def file_formats() -> Tuple[str, str]:
pass
@staticmethod
@abstractmethod
def get_config_converter_class() -> BaseConfigConverter:
pass
@classmethod
@abstractmethod
def load(
cls, file: str, converter_indices: FormatIndices, **kwargs
) -> OrderedDict:
pass
@classmethod
@abstractmethod
def save(
cls,
file_without_ext: str,
checkpoint: OrderedDict,
converter_indices: FormatIndices,
**kwargs,
) -> str:
pass
[docs] @classmethod
@abstractmethod
def init_output_checkpoint(
cls,
file_without_ext: str,
converter_indices: FormatIndices,
**kwargs,
) -> str:
r"""
(Pre)Initializes the output checkpoint at a supplied path. This is used
in streaming conversion when the checkpoint is written to file as
conversion is performed rather than accumulating the full checkpoint
in memory and saving to file at the very end.
"""
@classmethod
def convert(
cls,
input_checkpoint,
configs,
checkpoint_from_index,
output_checkpoint=OrderedDict(),
**kwargs,
):
instance = cls()
output_checkpoint = instance.convert_helper(
input_checkpoint,
configs,
checkpoint_from_index,
output_checkpoint=output_checkpoint,
**kwargs,
)
return output_checkpoint
[docs] def convert_helper(
self,
input_checkpoint,
configs: Tuple[dict, dict],
converter_indices: FormatIndices,
output_checkpoint=OrderedDict(),
drop_unmatched_keys: bool = False,
no_progress_bar: bool = True,
debug: bool = False,
):
r"""
Converts all keys in a checkpoint from `converter_indices.direction`
format to the other format. Conversion will fail if at least one of the
keys did not match on any conversion rules and drop_unmatched_keys is
not enabled. Returns the newly converted checkpoint.
"""
self.pre_checkpoint_convert(
input_checkpoint, output_checkpoint, configs, converter_indices
)
old_state_dict, new_state_dict = self.extract_model_dict(
input_checkpoint,
output_checkpoint,
configs,
converter_indices,
)
self.pre_model_convert(
old_state_dict,
new_state_dict,
configs,
converter_indices,
drop_unmatched_keys,
)
matched_all_keys = self.convert_all_keys(
old_state_dict,
new_state_dict,
converter_indices.direction,
action_fn_args={"configs": configs},
no_progress_bar=no_progress_bar,
debug=debug,
)
self.post_model_convert(
old_state_dict,
new_state_dict,
configs,
converter_indices,
drop_unmatched_keys,
)
if not matched_all_keys and not drop_unmatched_keys:
assert matched_all_keys, (
"Unable to match all keys. If you want to proceed by dropping keys that couldn't "
"matched, rerun with --drop-unmatched-keys"
)
elif not matched_all_keys:
logging.warning(
"proceeding even though some keys weren't matched because of --drop-unmatched-keys"
)
self.post_checkpoint_convert(
input_checkpoint, output_checkpoint, configs, converter_indices
)
return output_checkpoint
[docs] def pre_model_convert(
self,
old_state_dict: OrderedDict,
new_state_dict: OrderedDict,
configs: Tuple[dict, dict],
converter_indices: FormatIndices,
drop_unmatched_keys: bool,
):
r"""
Hook executes right before model conversion.
"""
[docs] def post_model_convert(
self,
old_state_dict: OrderedDict,
new_state_dict: OrderedDict,
configs: Tuple[dict, dict],
converter_indices: FormatIndices,
drop_unmatched_keys: bool,
key_prefix: str = "",
):
r"""
Hook executes right after model conversion.
"""
[docs] def pre_checkpoint_convert(
self,
input_checkpoint,
output_checkpoint,
configs: Tuple[dict, dict],
converter_indices: FormatIndices,
):
r"""
Hook executes before checkpoint conversion.
"""
[docs] def post_checkpoint_convert(
self,
input_checkpoint,
output_checkpoint,
configs: Tuple[dict, dict],
converter_indices: FormatIndices,
):
r"""
Hook executes after checkpoint conversion.
"""
[docs]class BaseCheckpointConverter_CS_CS(BaseCheckpointConverter):
@staticmethod
def file_formats() -> Tuple[str, str]:
return ("mdl", "mdl")
@classmethod
def load(cls, file: str, converter_indices: FormatIndices) -> OrderedDict:
import cerebras.pytorch as cstorch
return cstorch.load(file, map_location="cpu")
@classmethod
def save(
cls,
file_without_ext: str,
checkpoint: OrderedDict,
converter_indices: FormatIndices,
) -> OrderedDict:
import cerebras.pytorch as cstorch
if isinstance(checkpoint, StreamingCSWriter):
checkpoint.save()
return checkpoint.checkpoint_file
else:
to_index = converter_indices.direction - 1
output_file_format = cls.file_formats()[to_index]
file = file_without_ext + "." + output_file_format
cstorch.save(checkpoint, file)
return file
@classmethod
def init_output_checkpoint(
cls, file_without_ext: str, converter_indices: FormatIndices, **kwargs
) -> str:
if kwargs.get("export_safetensors", False):
logging.warning(
"--export-safetensors flag will be ignored as we are converting"
" to a CS format which uses Cerebras H5 checkpoints."
)
to_index = converter_indices.direction - 1
output_file_format = cls.file_formats()[to_index]
file = file_without_ext + "." + output_file_format
return StreamingCSWriter(file)
def pre_checkpoint_convert(
self,
input_checkpoint,
output_checkpoint,
configs: Tuple[dict, dict],
converter_indices: FormatIndices,
):
# Copy non model keys like optimizer state:
for category in input_checkpoint:
if category != "model" and category != "__metadata__":
output_checkpoint[category] = input_checkpoint[category]
output_checkpoint["model"] = {}
# check to see if we need to run dataloader iter state conversion
old_config = configs[converter_indices.direction]
worker_data_iter_files_dir = old_config.get("cerebras", {}).get(
"save_iter_state_path", ""
)
if worker_data_iter_files_dir:
# try to extract dataloader_type
data_processor = old_config.get("train_input", {}).get(
"data_processor", ""
)
if data_processor == "GptHDF5DataProcessor":
dataloader_type = "iterable"
elif data_processor == "GptHDF5MapDataProcessor":
dataloader_type = "map"
else:
raise ValueError(
"DataLoader state conversion requires `train_input.data_processor` to be "
"specified as either 'GptHDF5DataProcessor' or 'GptHDF5MapDataProcessor', but "
f"instead got: '{data_processor}'."
)
convert_dataloader_checkpoint(
output_checkpoint,
worker_data_iter_files_dir,
dataloader_type=dataloader_type,
shuffle_seed=0,
)
to_index = converter_indices.direction - 1
target_version = parse_format_version(
self.formats()[to_index][converter_indices.tgt_index]
)
update_ckpt_metadata(
input_checkpoint,
output_checkpoint,
configs[to_index],
target_version,
)
def extract_model_dict(
self,
input_checkpoint,
output_checkpoint,
configs: Tuple[dict, dict],
converter_indices: FormatIndices,
):
return input_checkpoint["model"], output_checkpoint["model"]
def post_checkpoint_convert(
self,
input_checkpoint,
output_checkpoint,
configs: Tuple[dict, dict],
converter_indices: FormatIndices,
):
# Required for backward compatibility with checkpoints saved pre 2.0.0
# Setting this will recompute the last_epochs for the lr_scheduler(s)
if (
"global_step" in output_checkpoint
and "lr_scheduler" in output_checkpoint
):
last_epoch = int(output_checkpoint["lr_scheduler"]["last_epoch"])
global_step = int(output_checkpoint["global_step"])
if last_epoch != global_step:
output_checkpoint["lr_scheduler"]["last_epoch"] = global_step
if all(
k in output_checkpoint["lr_scheduler"]
for k in ("_schedulers", "_milestones")
):
# This must be the state_dict of a SequentialLR scheduler
milestones = [0] + output_checkpoint["lr_scheduler"][
"_milestones"
]
for milestone, scheduler in zip(
milestones, state_dict["lr_scheduler"]["_schedulers"]
):
scheduler["last_epoch"] = (
max(global_step - milestone, 0),
)
if (
"model" in output_checkpoint
and "optimizer" in output_checkpoint
and "sparsity" in output_checkpoint["optimizer"]
and "state" in output_checkpoint["optimizer"]["sparsity"]
):
model = output_checkpoint["model"]
sparsity_optimizer = output_checkpoint["optimizer"]["sparsity"]
# Move sparsity masks from sparsity optimizer state to model
for weight_name, state in sparsity_optimizer["state"].items():
if "mask" in state and weight_name in model:
model[f"{weight_name}_mask"] = state["mask"]
output_checkpoint["optimizer"].pop("sparsity")
output_checkpoint["sparsity"] = {}
# move the step
if "step" in sparsity_optimizer:
output_checkpoint["sparsity"]["step"] = sparsity_optimizer[
"step"
]
# Convert sparsity schedule state
sparsity_schedule = {
param_name: {"index": param_group["sparsity"]["step"]}
for param_group in sparsity_optimizer["param_groups"]
for param_name in param_group["param_names"]
if (
"sparsity" in param_group
and hasattr(param_group["sparsity"], "__getitem__")
and hasattr(param_group["sparsity"], "__contains__")
and "step" in param_group["sparsity"]
)
}
import logging
logging.info(
[
param_name
for param_group in sparsity_optimizer["param_groups"]
for param_name in param_group["param_names"]
if (
"sparsity" in param_group
and hasattr(param_group["sparsity"], "__getitem__")
and hasattr(param_group["sparsity"], "__contains__")
and "step" in param_group["sparsity"]
)
]
)
if sparsity_schedule:
output_checkpoint["sparsity"]["sparsity"] = sparsity_schedule
[docs]class BaseCheckpointConverter_HF_CS(BaseCheckpointConverter_CS_CS):
r"""HF checkpoints contain model only while CS checkpoints package model,
optimizer, and lr_scheduler into a single checkpoint. This class overrides
the post_checkpoint_convert to automatically extract/package the state_dict
correctly.
"""
@staticmethod
def file_formats() -> Tuple[str, str]:
return ("bin", "mdl")
@classmethod
def load(
cls,
file: str,
converter_indices: FormatIndices,
) -> OrderedDict:
import cerebras.pytorch as cstorch
if os.path.isdir(file):
raise AssertionError(
"""
You have passed in a directory instead of a file. Some
converters support this behavior, so if this was intended
check the model you have entered.
"""
)
if file.endswith(".index.json"):
assert (
converter_indices.direction == 0
), ".index.json files are only supported when doing HF -> CS conversion"
return StreamingShardedHFReader(file)
else:
assert not file.endswith(".safetensors"), (
".safetensor files are only supported for sharded checkpoints due to safetensor's "
"weight sharing restrictions."
)
# Any other type of checkpoint
return cstorch.load(file, map_location="cpu")
@classmethod
def save(
cls,
file_without_ext: str,
checkpoint: OrderedDict,
converter_indices: FormatIndices,
) -> OrderedDict:
import cerebras.pytorch as cstorch
if isinstance(checkpoint, StreamingCSWriter):
checkpoint.save()
return checkpoint.checkpoint_file
elif isinstance(checkpoint, StreamingShardedHFWriter):
checkpoint.save()
return checkpoint.checkpoint_dir
else:
from_index = converter_indices.direction
to_index = from_index - 1
output_file_format = cls.file_formats()[to_index]
file = file_without_ext + "." + output_file_format
if converter_indices.direction == 0:
torch.save(checkpoint, file)
else:
cstorch.save(checkpoint, file)
return file
@classmethod
def init_output_checkpoint(
cls,
file_without_ext: str,
converter_indices: FormatIndices,
hf_shard_size: Union[str, int] = "10GB",
export_safetensors: bool = False,
**kwargs,
) -> str:
from_index = converter_indices.direction
to_index = from_index - 1
output_file_format = cls.file_formats()[to_index]
file = file_without_ext + "." + output_file_format
if converter_indices.direction == 0:
# HF -> CS
if export_safetensors:
logging.warning(
"--export-safetensors flag will be ignored as we are converting"
" to a CS format which uses Cerebras H5 checkpoints."
)
return StreamingCSWriter(file)
else:
# CS -> HF
return StreamingShardedHFWriter(
file_without_ext,
shard_size=hf_shard_size,
export_safetensors=export_safetensors,
)
def pre_checkpoint_convert(
self,
input_checkpoint,
output_checkpoint,
configs: Tuple[dict, dict],
converter_indices: FormatIndices,
):
if converter_indices.direction == 0:
output_checkpoint["model"] = {}
format_versions = self.formats()
from_index = converter_indices.direction
src_fmt = format_versions[from_index][converter_indices.src_index]
# In CS 2.3, our config formats changed.
if src_fmt == "cs-2.3":
# Create an alias for the model key
for config in configs:
if "trainer" in config:
if isinstance(config["trainer"], (list, tuple)):
raise ValueError(
"Converting a config with multiple "
"trainer configs is not supported."
)
config["model"] = config["trainer"]["init"]["model"]
def extract_model_dict(
self,
input_checkpoint,
output_checkpoint,
configs: Tuple[dict, dict],
converter_indices: FormatIndices,
):
from_index = converter_indices.direction
if converter_indices.direction == 0:
return input_checkpoint, output_checkpoint["model"]
else:
to_state_dict = input_checkpoint["model"]
if self.attempt_mup_to_sp():
mup_converter = select_mup_converter(
configs[1], override_converter=self.get_mup_converter()
)
if mup_converter:
if not self.supports_mup_conversion():
raise ConfigConversionError(
"This model currently does not support muP checkpoint conversion to HF."
)
to_state_dict = OnDemandDictionaryConverter(
to_state_dict,
mup_converter,
{"configs": configs},
)
return to_state_dict, output_checkpoint
def post_model_convert(
self,
old_state_dict: OrderedDict,
new_state_dict: OrderedDict,
configs: Tuple[dict, dict],
converter_indices: FormatIndices,
drop_unmatched_keys: bool,
key_prefix: str = "",
):
from_index = converter_indices.direction
if from_index == 1:
cs_config = configs[from_index]
sparsity_config = cs_config.get("sparsity")
if sparsity_config and sparsity_config.get("type") == "sideband":
# Finalize the CS sparsity in CS -> HF conversion.
logging.info(
"Finalizing sparsity. The output checkpoint will be dense."
)
for key, weight in new_state_dict.items():
weight[weight.isnan()] = 0
new_state_dict[key] = weight
def supports_mup_conversion(self) -> bool:
return False
def attempt_mup_to_sp(self) -> bool:
return True
[docs] def get_mup_converter(self) -> bool:
r"""Allows models to override the default muP converters with their own"""
return None
[docs]class BaseCheckpointConverter_UnpackedHF_PackedCS(
BaseCheckpointConverter_HF_CS
):
r"""Converter between a set of unpacked HF checkpoints and a single packed CS
checkpoint.
Some CS models consist of separate components which we want to initialize
from existing HF checkpoints. For example, initializing the image encoder and
text decoder of a multimodal model. This converter class provides an abstraction
for using existing HF <-> CS checkpoint converters.
In particular, we specify a list of `BaseCheckpointConverter_HF_CS` classes
through `converters()` corresponding to each model component. Similarly,
we specify another list of directory names through `component_names()`
corresponding to the name of the subdirectory containing the model checkpoint.
During conversion, this converter applies the i-th component converter to the
component checkpoint found in the i-th subdirectory name.
"""
@classmethod
def load(
cls,
path: str,
converter_indices: FormatIndices,
) -> OrderedDict:
def find_checkpoint_file(directory: str) -> str:
for filename in os.listdir(directory):
if filename.endswith(".index.json"):
return os.path.join(directory, filename)
if "pytorch_model.bin" in os.listdir(directory):
return os.path.join(directory, "pytorch_model.bin")
error_message = (
"HF -> CS Converter assumes that the input file will "
"be a directory that contains the sub-directory: {} "
"It will run the standard checkpoint loading on this "
"sub-directory, assuming the following convention. "
"It will check if an .index.json exists in the sub-dir, "
"and use this if found. Next, if will use a pytorch_model.bin in "
"sub-dir if found. Otherwise it will return an error. "
).format(directory)
raise AssertionError(error_message)
# HF --> CS
from_index = converter_indices.direction
if converter_indices.direction == 0:
# read in files
checkpoints = []
for name in cls.component_names():
dir = os.path.join(path, name)
file = find_checkpoint_file(dir)
checkpoints.append(super().load(file, converter_indices))
return checkpoints
# CS --> HF
else:
return super().load(path, converter_indices)
@classmethod
def init_output_checkpoint(
cls,
file_without_ext: str,
converter_indices: FormatIndices,
hf_shard_size: Union[str, int] = "10GB",
export_safetensors: bool = False,
**kwargs,
) -> str:
from_index = converter_indices.direction
to_index = from_index - 1
output_file_format = cls.file_formats()[to_index]
file = file_without_ext + "." + output_file_format
if converter_indices.direction == 0:
# HF -> CS
if export_safetensors:
logging.warn(
"--export-safetensors flag will be ignored as we are converting"
" to a CS format which uses Cerebras H5 checkpoints."
)
dir, file_name = os.path.split(file_without_ext)
file_name = file_name.split("_")[1:]
out_file = "pytorch_model_" + "_".join(file_name) + ".mdl"
out_file = os.path.join(dir, out_file)
return StreamingCSWriter(out_file)
else:
# CS -> HF
dir = os.path.dirname(file)
dirs = [os.path.join(dir, name) for name in cls.component_names()]
return [
StreamingShardedHFWriter(
model_dir,
shard_size=hf_shard_size,
export_safetensors=export_safetensors,
)
for model_dir in dirs
]
def convert_helper(
self,
input_checkpoint,
configs: Tuple[List[dict, dict], dict],
converter_indices: FormatIndices,
output_checkpoint=OrderedDict(),
drop_unmatched_keys: bool = False,
no_progress_bar: bool = True,
debug: bool = False,
):
hf_config = configs[0]
cs_config = configs[1]
cs_configs = [
{"model": cs_config["model"][name]}
for name in self.component_names()
]
from_index = converter_indices.direction
# HF -> CS
if converter_indices.direction == 0:
assert isinstance(input_checkpoint, list), (
"When converting from HF to CS, the Converter expects "
f"{len(self.converters())} input checkpoints for each "
"model component."
)
if output_checkpoint is None:
output_checkpoint = OrderedDict()
else:
if output_checkpoint is None:
output_checkpoint = [OrderedDict() for _ in self.converters()]
assert isinstance(output_checkpoint, list), (
"When converting from CS -> HF, the converter expects "
f"{len(self.converters())} output checkpoints for each "
"model component."
)
self.pre_checkpoint_convert(
input_checkpoint, output_checkpoint, configs, converter_indices
)
if converter_indices.direction == 0:
for i, converter_cls in enumerate(self.converters()):
instance = converter_cls()
output_checkpoint = instance.convert_helper(
input_checkpoint[i],
[hf_config[i], cs_configs[i]],
converter_indices,
output_checkpoint=output_checkpoint,
drop_unmatched_keys=drop_unmatched_keys,
no_progress_bar=no_progress_bar,
debug=debug,
)
else:
for i, converter_cls in enumerate(self.converters()):
instance = converter_cls()
output_checkpoint[i] = instance.convert_helper(
input_checkpoint,
[hf_config[i], cs_configs[i]],
converter_indices,
output_checkpoint=output_checkpoint[i],
drop_unmatched_keys=drop_unmatched_keys,
no_progress_bar=no_progress_bar,
debug=debug,
)
self.post_checkpoint_convert(
input_checkpoint, output_checkpoint, configs, converter_indices
)
return output_checkpoint
@classmethod
def save(
cls,
file_without_ext: str,
checkpoint: List[OrderedDict],
converter_indices: FormatIndices,
**kwargs,
) -> str:
if converter_indices.direction == 0:
dir, file_name = os.path.split(file_without_ext)
file_name = file_name.split("_")[1:]
out_file = "pytorch_model_" + "_".join(file_name)
out_file = os.path.join(dir, out_file)
return super().save(
out_file, checkpoint, converter_indices, **kwargs
)
else:
outputs = []
for ckpt in checkpoint:
output = super().save(
file_without_ext, ckpt, converter_indices, **kwargs
)
outputs.append(output)
return outputs
@classmethod
def converter_note(cls) -> str:
src_fmt, tgt_fmt = cls.formats()[0], cls.formats()[1]
src_arch, tgt_arch = cls.architectures()[0], cls.architectures()[1]
return (
f"{src_fmt} ({', '.join(src_arch)}) <-> {tgt_fmt} {tgt_arch}. "
"Note that we expect the following structure for HF checkpoints: "
"one outer directory that contains sub-directories named "
f"({', '.join(cls.component_names())}). Each of these directories "
"are expected to have either a pytorch_model.bin or .index.json "
"file, as well as config.json. "
"Please pass the path to the outer directory to both the "
"--config argument and checkpoint_file argument. The converter will "
"then find the correct config and checkpoint files assuming the file "
"structure above. "
"For CS -> HF, --config will refer to .yaml config and checkpoint "
"path will refer to .mdl checkpoint as usual. "
)
@staticmethod
@abstractmethod
def converters() -> List[Type[BaseCheckpointConverter]]:
pass
@staticmethod
@abstractmethod
def component_names() -> List[str]:
pass
@staticmethod
@abstractmethod
def architectures() -> Tuple[List[str], str]:
pass
[docs]class FallbackConverter_CS_CS(BaseCheckpointConverter_CS_CS):
"""Generic fallback converter class."""
def __init__(self):
super().__init__()
self.rules = [
ConversionRule([".*"], action=self.replaceKey),
]
[docs]class BaseCheckpointConverter_CS18_CS19(FallbackConverter_CS_CS):
"""Generic fallback converter class for cs-1.8 -> cs-1.9."""
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-1.8"), FormatVersions("cs-1.9"))
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return BaseConfigConverter_CS18_CS19
[docs]class BaseCheckpointConverter_CS19_CS20(FallbackConverter_CS_CS):
"""Generic fallback converter class for cs-1.9 -> cs-2.0."""
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-1.9"), FormatVersions("cs-2.0"))
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return BaseConfigConverter_CS19_CS20
[docs]class BaseCheckpointConverter_CS20_CS21(FallbackConverter_CS_CS):
"""Generic fallback converter class for cs-2.0 -> cs-2.1."""
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-2.0"), FormatVersions("cs-2.1"))
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return BaseConfigConverter_CS20_CS21
[docs]class BaseCheckpointConverter_CS21_CS22(FallbackConverter_CS_CS):
"""Generic fallback converter class for cs-2.1 -> cs-2.2."""
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-2.1"), FormatVersions("cs-2.2"))
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return BaseConfigConverter_CS21_CS22
[docs]class BaseCheckpointConverter_CS22_CS23(FallbackConverter_CS_CS):
"""Generic fallback converter class for cs-2.2 -> cs-2.3."""
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-2.2"), FormatVersions("cs-2.3"))
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return BaseConfigConverter_CS22_CS23
# Base converters to be used as fallback if converter does not exist
fallback_converters: List[BaseCheckpointConverter] = [
BaseCheckpointConverter_CS18_CS19,
BaseCheckpointConverter_CS19_CS20,
BaseCheckpointConverter_CS20_CS21,
BaseCheckpointConverter_CS21_CS22,
BaseCheckpointConverter_CS22_CS23,
]
[docs]class ConfigConversionError(Exception):
"Raised when a config cannot be converted."
[docs]class BaseConfigConverter(BaseDictionaryConverter, ABC):
def __init__(self):
super().__init__(pbar_desc="Converting Config")
self.pre_convert_defaults = [{}, {}]
self.post_convert_defaults = [{}, {}]
@staticmethod
@abstractmethod
def file_formats() -> Tuple[str, str]:
pass
@classmethod
def load(cls, file: str, converter_indices: FormatIndices) -> dict:
input_file_format = cls.file_formats()[converter_indices.direction]
if input_file_format == "json":
with open(file, "r") as f:
return json.load(f)
elif input_file_format == "yaml":
with open(file, "r") as f:
return yaml.load(f, Loader=yaml.SafeLoader)
else:
raise ValueError(
"Unsupported input file format: {}".format(input_file_format())
)
@classmethod
def save(
cls,
file_without_ext: str,
config: dict,
converter_indices: FormatIndices,
) -> str:
to_index = (converter_indices.direction + 1) % 2
output_file_format = cls.file_formats()[to_index]
file = file_without_ext + "." + output_file_format
if output_file_format == "json":
with open(file, "w") as f:
f.write(json.dumps(config, indent=4))
elif output_file_format == "yaml":
with open(file, "w") as f:
f.write(yaml.dump(config, indent=4))
else:
raise ValueError(
"Unsupported input file format: {}".format(output_file_format())
)
return file
@classmethod
def convert(
cls,
config,
converter_indices: FormatIndices,
drop_unmatched_keys: bool = False,
no_progress_bar: bool = True,
debug: bool = False,
):
instance = cls()
return instance.convert_helper(
config,
converter_indices,
drop_unmatched_keys=drop_unmatched_keys,
no_progress_bar=no_progress_bar,
debug=debug,
)
[docs] def convert_helper(
self,
config,
converter_indices: FormatIndices,
drop_unmatched_keys: bool = False,
no_progress_bar: bool = True,
debug: bool = False,
):
r"""
Converts all keys in a config from `converter_indices.direction` format
to the other format. Conversion will fail if at least one of the keys
did not match on any conversion rules and drop_unmatched_keys is not
enabled. Returns the newly converted config.
"""
old_config = self.pre_config_convert(config, converter_indices)
new_config = {}
matched_all_keys = self.convert_all_keys(
old_config,
new_config,
converter_indices.direction,
no_progress_bar=no_progress_bar,
debug=debug,
suppress_unmatched_key_warning=drop_unmatched_keys,
)
if not matched_all_keys and not drop_unmatched_keys:
assert matched_all_keys, "Unable to match all keys in config."
final_config = self.post_config_convert(
config,
old_config,
new_config,
converter_indices,
drop_unmatched_keys,
)
return final_config
def pre_config_convert(
self,
config,
converter_indices,
):
from_index = converter_indices.direction
for key in self.pre_convert_defaults[from_index]:
if key not in config:
config[key] = self.pre_convert_defaults[from_index][key]
elif isinstance(self.pre_convert_defaults[from_index][key], dict):
for subkey, subvalue in self.pre_convert_defaults[from_index][
key
].items():
if subkey not in config[key]:
config[key][subkey] = subvalue
return config
def post_config_convert(
self,
original_config,
old_config,
new_config,
converter_indices,
drop_unmatched_keys,
):
to_index = 1 - converter_indices.direction
for key in self.post_convert_defaults[to_index]:
if key not in new_config:
new_config[key] = self.post_convert_defaults[to_index][key]
elif isinstance(self.post_convert_defaults[to_index][key], dict):
for subkey, subvalue in self.post_convert_defaults[to_index][
key
].items():
if subkey not in new_config[key]:
new_config[key][subkey] = subvalue
return new_config
@staticmethod
def assert_factory_fn(assert_index, assert_value):
# Note: when `assert_value`` is list,
# an assertion is thrown if a value is not
# equal to any of the values in the list
def assert_factory_wrapper(
old_key,
new_key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
):
if from_index != assert_index:
raise ConfigConversionError(
f"{old_key} should not appear in the config"
)
if (
not isinstance(assert_value, list)
and old_state_dict[old_key] != assert_value
):
raise ConfigConversionError(
"Can't convert config with {}={}. Only {} is supported.".format(
old_key, old_state_dict[old_key], assert_value
)
)
elif (
isinstance(assert_value, list)
and old_state_dict[old_key] not in assert_value
):
raise ConfigConversionError(
"Can't convert config with {}={}. Only {} is supported.".format(
old_key, old_state_dict[old_key], assert_val
)
)
return assert_factory_wrapper
[docs]class BaseConfigConverter_HF_CS(BaseConfigConverter):
r"""CS packages model, optimizer, and lr_scheduler into a single config.
This class overrides the [pre|post]_config_convert fn to automatically
extract/package the model configuration correctly.
"""
def __init__(self):
super().__init__()
self.post_convert_defaults[1]["mixed_precision"] = True
@staticmethod
def file_formats() -> Tuple[str, str]:
return ("json", "yaml")
def pre_config_convert(
self,
config,
converter_indices,
):
from_index = converter_indices.direction
format_versions = self.formats()
src_fmt = format_versions[from_index][converter_indices.src_index]
# In CS 2.3, our config formats changed.
if src_fmt == "cs-2.3" and "trainer" in config:
if isinstance(config["trainer"], (list, tuple)):
raise ValueError(
"Converting a config with multiple "
"trainer configs is not supported."
)
# Create an alias for the model config
config["model"] = config["trainer"]["init"]["model"]
model_config = config["model"] if from_index == 1 else config
model_config = self._handle_mup_conversion(config, converter_indices)
return super().pre_config_convert(model_config, converter_indices)
def post_config_convert(
self,
original_config,
old_config,
new_config,
converter_indices,
drop_unmatched_keys,
):
model_config = super().post_config_convert(
original_config,
old_config,
new_config,
converter_indices,
drop_unmatched_keys,
)
# Starting from cs-2.1, we no longer use `use_bfloat16` and use `fp16_type` instead.
# This block takes care of conversion from HF use_bfloat16 <-> CS fp16_type.
# Note that we don't check versions since we don't have info on what exact version we're
# converting here, but also it doesn't really matter to have an extra unused flag for
# previous releases.
from_index = converter_indices.direction
if (
converter_indices.direction == 0
and "use_bfloat16" in original_config
):
model_config["fp16_type"] = (
"bfloat16" if original_config["use_bfloat16"] else "float16"
)
elif from_index == 1 and "fp16_type" in original_config:
if original_config["fp16_type"] == "cbfloat16":
model_config["use_bfloat16"] = True # Proxy dtype
elif original_config["fp16_type"] == "bfloat16":
model_config["use_bfloat16"] = True
elif original_config["fp16_type"] == "float16":
model_config["use_bfloat16"] = False
else:
raise ValueError(
f"Invalid `fp16_type` value: {original_config['fp16_type']}"
)
if converter_indices.direction == 0:
return {"model": model_config}
else:
return model_config
def _handle_mup_conversion(self, config, converter_indices):
from_index = converter_indices.direction
to_index = 1 - from_index
format_versions = self.formats()
tgt_fmt = format_versions[to_index][converter_indices.tgt_index]
model_config = config["model"] if from_index == 1 else config
if from_index == 1 and self.attempt_mup_to_sp():
mup_converter = select_mup_converter(
model_config,
override_converter=self.get_mup_converter(),
config_converter=True,
)
if mup_converter:
if not self.supports_mup_conversion():
raise ConfigConversionError(
"This model currently does not support muP checkpoint conversion to HF."
)
model_config = mup_converter.convert(
model_config,
converter_indices,
)
return model_config
[docs] def supports_mup_conversion(self) -> bool:
r"""Determines whether muP -> sP conversion is supported for this model."""
return False
[docs] def attempt_mup_to_sp(self) -> bool:
r"""Determines whether muP -> sP conversion is should be attempted.
Some HF models (such as BTLM) should not attempt muP -> sP conversion
since they can natively handle muP.
"""
return True
[docs] def get_mup_converter(self) -> bool:
r"""Allows models to override the default muP converters with their own"""
return None
[docs]class BaseConfigConverter_UnpackedHF_PackedCS(BaseConfigConverter_HF_CS):
r"""Converter between a set of unpacked HF configs and a single packed CS
configs.
Some CS models consist of separate components which we want to initialize
from existing HF checkpoints. For example, initializing the image encoder and
text decoder of a multimodal model. This converter class provides an abstraction
for using existing HF <-> CS checkpoint converters.
In particular, we specify a list of `BaseConfigConverter_HF_CS` classes
through `converters()` corresponding to each model component. Similarly,
we specify another list of directory names through `component_names()`
corresponding to the name of the subdirectory containing the model config.
During conversion, this converter applies the i-th component converter to the
component config found in the i-th subdirectory name.
"""
@staticmethod
@abstractmethod
def converters() -> List[Type[BaseCheckpointConverter]]:
pass
@staticmethod
@abstractmethod
def component_names() -> List[str]:
pass
@classmethod
def load(
cls,
path: str,
converter_indices: FormatIndices,
) -> OrderedDict:
# HF --> CS
if converter_indices.direction == 0:
configs = []
for name in cls.component_names():
file = os.path.join(path, name, "config.json")
assert os.path.exists(file)
config = super().load(file, converter_indices)
configs.append(config)
return configs
# CS --> HF
else:
return super().load(path, converter_indices)
@classmethod
def save(
cls,
file_without_ext: str,
config: OrderedDict,
converter_indices: FormatIndices,
**kwargs,
) -> str:
# saving CS requires only saving once
if converter_indices.direction == 0:
dir, file_name = os.path.split(file_without_ext)
file_name = file_name.split("_")[1:]
out_file = "config_" + "_".join(file_name)
out_file = os.path.join(dir, out_file)
return super().save(out_file, config, converter_indices, **kwargs)
# saving HF requires separating encoders and saving both
else:
save_files = []
dir = os.path.dirname(file_without_ext)
for i, name in enumerate(cls.component_names()):
path = os.path.join(dir, name, "config")
save_file = super().save(
path, config[i], converter_indices, **kwargs
)
save_files.append(save_file)
return save_files
def convert_helper(
self,
config,
converter_indices: FormatIndices,
drop_unmatched_keys: bool = False,
no_progress_bar: bool = True,
debug: bool = False,
):
old_config = self.pre_config_convert(config, converter_indices)
if converter_indices.direction == 0:
input_config = [config for config in old_config]
else:
input_config = [
{"model": config["model"][name]}
for name in self.component_names()
]
new_config = []
for i, converter_cls in enumerate(self.converters()):
instance = converter_cls()
new_config.append(
instance.convert_helper(
input_config[i],
converter_indices,
drop_unmatched_keys,
no_progress_bar=no_progress_bar,
debug=debug,
)
)
final_config = self.post_config_convert(
config,
old_config,
new_config,
converter_indices,
drop_unmatched_keys,
)
return final_config
def post_config_convert(
self,
original_config,
old_config,
new_config,
converter_indices,
drop_unmatched_keys,
):
if converter_indices.direction == 0:
new_config = {
name: config["model"]
for name, config in zip(self.component_names(), new_config)
}
return super().post_config_convert(
original_config,
old_config,
new_config,
converter_indices,
drop_unmatched_keys,
)
else: # CS -> multiple HF models
# Updating defaults here for individual HF model configs does
# not make sense since the `post_config_convert` fn of each individual component
# were already set when `convert_helper` of individual component model is called
return new_config
[docs]class BaseConfigConverter_CS_CS(BaseConfigConverter):
r"""CS packages model, optimizer, and lr_scheduler into a single config.
This class overrides the [pre|post]_config_convert fn to automatically
extract/package the model configuration correctly.
"""
def __init__(self):
super().__init__()
self.post_convert_defaults[0]["mixed_precision"] = True
self.post_convert_defaults[1]["mixed_precision"] = True
@staticmethod
def file_formats() -> Tuple[str, str]:
return ("yaml", "yaml")
def pre_config_convert(
self,
config,
converter_indices,
):
model_config = config["model"]
model_config = self._handle_mup_conversion(config, converter_indices)
return super().pre_config_convert(model_config, converter_indices)
def post_config_convert(
self,
original_config,
old_config,
new_config,
converter_indices,
drop_unmatched_keys,
):
final_config = {
key: copy.deepcopy(original_config[key])
for key in original_config
if key != "model"
}
final_config["model"] = super().post_config_convert(
original_config,
old_config,
new_config,
converter_indices,
drop_unmatched_keys,
)
# delete the cerebras key (including the save_iter_state_path key)
final_config.pop("cerebras", "")
format_versions = self.formats()
from_index = converter_indices.direction
to_index = 1 - from_index
src_fmt = format_versions[from_index][converter_indices.src_index]
tgt_fmt = format_versions[to_index][converter_indices.tgt_index]
# When converting configs, remove runconfig params that have been deprecated across releases
if "runconfig" in final_config and src_fmt in ["cs-1.9", "cs-2.0"]:
self._remove_deprecated_runconfig_params_2_1(
final_config["runconfig"]
)
if "runconfig" in final_config and src_fmt == "cs-2.1":
self._remove_deprecated_runconfig_params_2_2(final_config)
if "sparsity" in final_config and src_fmt == "cs-2.1":
self._convert_sparsity_params_2_2(final_config)
# csconfig is an old section in the configs that's not been used since 1.9.
if "csconfig" in final_config and src_fmt in ["cs-1.9", "cs-2.0"]:
del final_config["csconfig"]
# In CS 2.0, some optimizer and LRS params were renamed and/or refactored to match the
# vanilla PyTorch API. However, the old values were still accepted. In CS 2.1, these params
# are no longer accepted. This base class takes care of applying the rename/refactor to such
# params when moving from CS 2.0 to CS 2.1.
if src_fmt == "cs-2.0" and tgt_fmt == "cs-2.1":
if "optimizer" in final_config:
self._apply_optimizer_transforms(final_config["optimizer"])
self._apply_lrs_transforms(final_config["optimizer"])
self._apply_pol_transforms(final_config)
self._apply_fp16_transforms(final_config["model"])
# In CS 2.3, our config formats changed.
if src_fmt == "cs-2.2" and tgt_fmt == "cs-2.3":
from cerebras.modelzoo.trainer.utils import (
convert_legacy_params_to_trainer_params,
)
final_config = convert_legacy_params_to_trainer_params(final_config)
return final_config
def _handle_mup_conversion(self, config, converter_indices):
from cerebras.modelzoo.tools.checkpoint_converters.mup import (
ConfigConverter_muP_CS22_CS23,
)
from_index = converter_indices.direction
to_index = 1 - from_index
format_versions = self.formats()
tgt_fmt = format_versions[to_index][converter_indices.tgt_index]
model_config = config["model"]
if tgt_fmt == "cs-2.3" and ConfigConverter_muP_CS22_CS23.is_mup(
model_config
):
model_config = ConfigConverter_muP_CS22_CS23.convert(
config,
converter_indices,
)
return model_config
def _remove_deprecated_runconfig_params_2_2(self, config):
"""Deletes deprecated runconfig params when moving from 2.1 to 2.2."""
if "use_cs_grad_accum" in config["runconfig"]:
enable = config["runconfig"].pop("use_cs_grad_accum")
if type(enable) is not bool:
raise ValueError(
f"Invalid \"{enable}\" value {enable}. Expected True or False."
)
for section in ["train_input", "eval_input"]:
input_config = config.setdefault(section, {})
if enable is False:
input_config["micro_batch_size"] = None
elif "micro_batch_size" not in input_config:
input_config["micro_batch_size"] = "auto"
config["runconfig"].pop("autogen_policy", None)
def _convert_sparsity_params_2_2(self, config):
"""Converts sparsity params when moving from 2.1 to 2.2."""
sparsity = config["sparsity"]
if isinstance(sparsity, (int, float)):
return
if "type" in sparsity:
sparsity["algorithm"] = sparsity.pop("type")
if "algorithm" in sparsity and sparsity["algorithm"] == "static":
sparsity.pop("algorithm")
if len(sparsity) == 1 and "sparsity" in sparsity:
config["sparsity"] = sparsity["sparsity"]
return
if "schedule" in sparsity:
sparsity["update"] = sparsity.pop("schedule")
if "sparsity_schedule" in sparsity:
steps, schedule = zip(*sparsity.pop("sparsity_schedule"))
sparsity["schedule"] = list(schedule)
sparsity["update"] = {"steps": list(steps)}
if "sparsity" in sparsity and not isinstance(
sparsity["sparsity"], (int, float)
):
sparsity["schedule"] = sparsity.pop("sparsity")
if "update" in sparsity and isinstance(sparsity["update"], int):
if sparsity["update"] == 1:
sparsity.pop("update")
else:
sparsity["update"] = {"freq": sparsity["update"]}
if "param_name_patterns" in sparsity:
def regex_to_glob(pattern):
# TODO: Handle other regex patterns as needed
return pattern.replace(".*", "*")
param_name_patterns = sparsity.pop("param_name_patterns")
if isinstance(param_name_patterns, str):
sparsity["param_filter"] = regex_to_glob(param_name_patterns)
elif isinstance(param_name_patterns, (tuple, list)):
sparsity["param_filter"] = type(param_name_patterns)(
map(regex_to_glob, param_name_patterns)
)
elif isinstance(param_name_patterns, dict):
config["sparsity"] = [
{
"param_filter": regex_to_glob(pattern),
**copy.deepcopy(sparsity),
**sparsity_config,
}
for pattern, sparsity_config in param_name_patterns.items()
]
else:
raise RuntimeError(
f"invalid param_name_patterns type: {param_name_patterns}"
)
def _remove_deprecated_runconfig_params_2_1(self, config):
"""Deletes deprecated runconfig params when moving from 1.9 or 2.0."""
if "num_act_servers" in config or "num_wgt_servers" in config:
logging.warning(
"Removing 'num_act_servers' or 'num_wgt_servers' found in runconfig. "
"Release 2.0 and later chooses optimal values for these params."
)
keys_to_delete = [
"experimental_api",
"multireplica",
"num_replicas",
"save_losses",
"service_dir",
"use_appliance_data",
"num_act_servers",
"num_wgt_servers",
]
for key in keys_to_delete:
config.pop(key, None)
# if is_pretrained_checkpoint was True, replace it with load_checkpoint_states
if config.pop("is_pretrained_checkpoint", False):
config["load_checkpoint_states"] = ["model", "dataloader"]
# fixing unused parameter keep_checkpoint_max to use intended parameter max_checkpoints
max_checkpoints = config.pop("keep_checkpoint_max", None)
if max_checkpoints is not None and "max_checkpoints" not in config:
config["max_checkpoints"] = max_checkpoints
def _apply_pol_transforms(self, config):
if "precision_opt_level" in config["model"] and "runconfig" in config:
# Only override runconfig if it doesn't already exist
if "precision_opt_level" not in config["runconfig"]:
config["runconfig"]["precision_opt_level"] = config["model"][
"precision_opt_level"
]
# Pop POL from model since it's no longer supported
config["model"].pop("precision_opt_level")
def _apply_fp16_transforms(self, config):
if "use_bfloat16" in config:
config["fp16_type"] = (
"bfloat16" if config["use_bfloat16"] else "float16"
)
# Pop use_bfloat16 from model since it's no longer supported
config.pop("use_bfloat16")
def _apply_optimizer_transforms(self, config):
optimizer_type = config.get("optimizer_type", None)
if not optimizer_type:
return
optimizer_map = self._get_optimizer_lrs_signatures()["optimizers"]
if optimizer_type.lower() not in optimizer_map:
return
cls_signature: inspect.Signature = optimizer_map[optimizer_type.lower()]
aliases = {
"weight_decay": ["weight_decay_rate"],
"betas": [["beta1", "beta2"]],
"eps": [["eps1", "eps2"]],
"etas": [["eta1", "eta2"]],
"step_sizes": [["step_size_min", "step_size_max"]],
}
# Replace all aliases with the new key
for name in cls_signature.parameters.keys():
if (
name
not in ("self", "params", "lr", "learning_rate", *config.keys())
and name in aliases
):
for alias in aliases[name]:
if isinstance(alias, str) and alias in config:
config[name] = config.pop(alias)
break
elif isinstance(alias, (list, tuple)) and all(
a in config for a in alias
):
config[name] = type(alias)(config.pop(a) for a in alias)
break
def _apply_lrs_transforms(self, config):
learning_rate = config.get("learning_rate", None)
if isinstance(learning_rate, dict):
learning_rate_dicts = [learning_rate]
elif isinstance(learning_rate, (list, tuple)):
learning_rate_dicts = learning_rate
else:
return
lr_scheduler_map = self._get_optimizer_lrs_signatures()["lr_schedulers"]
# common aliases
aliases = {
"total_iters": ["steps", "decay_steps"],
"initial_learning_rate": ["learning_rate", "base_lr"],
"base_lr": ["learning_rate", "initial_learning_rate"],
"learning_rates": ["values"],
"milestones": ["boundaries"],
"T_max": ["t_max"],
"T_0": ["t_0"],
"T_mult": ["t_mult"],
}
# Replace all aliases with the new key
for lr_params in learning_rate_dicts:
scheduler = lr_params.get("scheduler").lower()
for name in (scheduler, f"{scheduler}lr"):
if name in lr_scheduler_map:
cls_signature: inspect.Signature = lr_scheduler_map[name]
break
else:
continue
for name in cls_signature.parameters.keys():
if (
name not in ("self", "optimizer", *lr_params.keys())
and name in aliases
):
for alias in aliases[name]:
if alias in lr_params:
lr_params[name] = lr_params.pop(alias)
break
def _get_optimizer_lrs_signatures(self):
artifact_dir = get_artifact_dir("cs-2.0")
with open(artifact_dir / "optimizer_lrs_signatures.pkl", "rb") as f:
signatures = pickle.load(f)
return signatures
[docs]class FallbackConfigConverter_CS_CS(BaseConfigConverter_CS_CS):
"""Generic fallback config converter class."""
def __init__(self):
super().__init__()
self.rules = [
ConversionRule([".*"], action=self.replaceKey),
]
[docs]class BaseConfigConverter_CS18_CS19(FallbackConfigConverter_CS_CS):
"""Generic fallback config converter class for cs-1.8 -> cs-1.9."""
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-1.8"), FormatVersions("cs-1.9"))
[docs]class BaseConfigConverter_CS19_CS20(FallbackConfigConverter_CS_CS):
"""Generic fallback config converter class for cs-1.9 -> cs-2.0."""
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-1.9"), FormatVersions("cs-2.0"))
[docs]class BaseConfigConverter_CS20_CS21(FallbackConfigConverter_CS_CS):
"""Generic fallback config converter class for cs-2.0 -> cs-2.1."""
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-2.0"), FormatVersions("cs-2.1"))
[docs]class BaseConfigConverter_CS21_CS22(FallbackConfigConverter_CS_CS):
"""Generic fallback config converter class for cs-2.1 -> cs-2.2."""
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-2.1"), FormatVersions("cs-2.2"))
[docs]class BaseConfigConverter_CS22_CS23(FallbackConfigConverter_CS_CS):
"""Generic fallback config converter class for cs-2.2 -> cs-2.3."""
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("cs-2.2"), FormatVersions("cs-2.3"))
def _addindent(s_, numSpaces):
s = s_.split('\n')
s = [(numSpaces * ' ') + line for line in s]
s = '\n'.join(s)
return s
[docs]def get_artifact_dir(version) -> Path:
artifact_dir: Path = Path(__file__).parent / "artifacts" / version
if not artifact_dir.exists():
raise NotADirectoryError(f"{artifact_dir} is not a directory.")
return artifact_dir
[docs]def convert_dataloader_checkpoint(
checkpoint_state_dict: dict,
data_checkpoints_dir: str,
dataloader_type: str = "map",
shuffle_seed: int = 0,
):
"""Converts DataLoader state files saved in release 1.9 to DataLoader checkpoint format for the
new map and iterable DataLoaders in MZ in release 2.0. This is useful to provide backwards
comptability for deterministic restart on 2.0 runs from old dataloader state files.
Args:
checkpoint_state_dict: the state_dict of the 1.9 checkpoint
data_checkpoints_dir: Path to directory containing data step file
`data_iter_checkpoint_state_file_global` and worker checkpoint files of the format
`data_iter_state_file_worker_*_step_*.txt`
dataloader_type: The MZ DataLoader for which state is being converted. Use `map` for the
map-style dataloader and `iterable` for the iterable-style dataloader. Defaults to
map-style dataloader.
shuffle_seed: The seed value to be captured in the DataLoader state for the map-style
dataloader. Note that the seed is only relevant for deterministically restarting the
map-style dataloader if dataset shuffling/mixing is enabled.
"""
if "dataloader" in checkpoint_state_dict:
logging.warning(
"DataLoader state already exists in the checkpoint. R1.9 DataLoader state specified "
"under config `cerebras.save_iter_state_path` will not be injected into the checkpoint."
)
return
# Check if data_checkpoints_dir contains file specifying the data step
global_data_iter_state_file = os.path.join(
data_checkpoints_dir, "data_iter_checkpoint_state_file_global"
)
assert os.path.isfile(global_data_iter_state_file), (
f"File `{global_data_iter_state_file}` does not exist. "
f"Please ensure that the specified dir `{data_checkpoints_dir}` "
"has file `data_iter_checkpoint_state_file_global` that records "
"the data step for the R1.9 Dataloader state being converted."
)
# Read the data step
with open(global_data_iter_state_file, "r") as f:
data_step = int(f.readline())
total_samples_streamed = 0
wrk_states = []
dir = Path(data_checkpoints_dir)
for f in os.listdir(dir):
if f.endswith('.txt'):
# WRK data iter files names follow the format:
# `data_iter_state_file_worker_{wrk_id}_step_{step}.txt`
# where `wrk_id` and `step` are ints.
file_name_split = f.split('_')
wrk_id = int(file_name_split[-3])
step = int(file_name_split[-1].split('.')[0])
# Each worker will have a single checkpoint at the data step
if step == data_step:
wrk_ckpt_file = os.path.join(data_checkpoints_dir, f)
with open(wrk_ckpt_file, "r") as ckpt:
samples_streamed = int(ckpt.readline())
if dataloader_type == "iterable":
wrk_state_dict = {
"samples_streamed": samples_streamed,
"shard_index": wrk_id,
}
wrk_states.append(wrk_state_dict)
total_samples_streamed += samples_streamed
if (
dataloader_type == "map"
): # State dict aggregation of map-style dataloader
aggregated_state_dict = {
"samples_streamed": total_samples_streamed,
"seed": shuffle_seed,
}
else: # State dict aggregation of iterable-style dataloader
wrk_states.sort(key=lambda x: x["shard_index"])
aggregated_state_dict = {"all_worker_states": wrk_states}
# Add DL state to previously loaded checkpoint state dict
checkpoint_state_dict["dataloader"] = aggregated_state_dict
[docs]def no_ckpt_conversion_necessary(converter: BaseDictionaryConverter) -> bool:
"""Some converters copy the input checkpoint to the output (i.e. they
match ".*"). In these cases, conversion is not necessary and the user may
directly use the input checkpoint. This function returns whether conversion
can be skipped or not.
"""
# Conversion can be skipped if:
# 1) it is a CS <> CS converter
# 2) It's only rule is .* replaceKey
# 3) The converter isn't using any hooks for custom behavior
return (
isinstance(converter, BaseCheckpointConverter_CS_CS)
and len(converter.rules) == 1
and len(converter.rules[0].segments) == 1
and converter.rules[0].segments[0] == ".*"
and converter.rules[0].action
== BaseCheckpointConverter_CS_CS.replaceKey
and all(
getattr(type(converter), fn_name)
== getattr(BaseCheckpointConverter_CS_CS, fn_name)
for fn_name in [
"pre_checkpoint_convert",
"extract_model_dict",
"pre_model_convert",
"convert_all_keys",
"post_model_convert",
"post_checkpoint_convert",
]
)
)
[docs]def select_mup_converter(
config, override_converter=None, config_converter=False
):
from cerebras.modelzoo.tools.checkpoint_converters.mup import (
ConfigConverter_sP_muP_post_CS23,
ConfigConverter_sP_muP_pre_CS23,
Converter_sP_muP_post_CS23,
Converter_sP_muP_pre_CS23,
)
if override_converter:
if override_converter.is_mup(config):
return override_converter
return None
if config_converter:
if ConfigConverter_sP_muP_post_CS23.is_mup(config):
return ConfigConverter_sP_muP_post_CS23
elif ConfigConverter_sP_muP_pre_CS23.is_mup(config):
return ConfigConverter_sP_muP_pre_CS23
else:
if Converter_sP_muP_post_CS23.is_mup(config):
return Converter_sP_muP_post_CS23
elif Converter_sP_muP_pre_CS23.is_mup(config):
return Converter_sP_muP_pre_CS23
return None