Source code for cerebras.pytorch.metrics.mean_iou

# Copyright 2016-2023 Cerebras Systems
# SPDX-License-Identifier: BSD-3-Clause

"""
mean Intersection-Over-Union (mIOU) metric for PyTorch.
Calculate per-step mean Intersection-Over-Union (mIOU).
"""
from typing import List, Optional

import torch

import cerebras.pytorch as cstorch
from cerebras.pytorch.metrics.metric import Metric
from cerebras.pytorch.metrics.utils import (
    compute_confusion_matrix,
    compute_mask,
    divide_no_nan,
)


def compute_helper(confusion_matrix, mask):
    """Returns the meanIOU"""
    mask = cstorch.make_constant(mask)

    sum_over_row = torch.sum(confusion_matrix, 0, dtype=torch.float)
    sum_over_col = torch.sum(confusion_matrix, 1, dtype=torch.float)

    # TODO: workaround for SW-76827
    # cm_diag = torch.diagonal(confusion_matrix).to(dtype=torch.float)
    wgth_id = torch.eye(
        confusion_matrix.shape[0], device=confusion_matrix.device
    )
    cm_diag = (wgth_id * confusion_matrix).sum(
        axis=-1, dtype=torch.float
    ) * mask
    denominator = (sum_over_row + sum_over_col - cm_diag) * mask

    # The mean is only computed over classes that appear in the
    # label or prediction tensor. If the denominator is 0, we need to
    # ignore the class.
    num_valid_entries = torch.sum(torch.ne(denominator, 0).to(torch.float))

    # If the value of the denominator is 0, set it to 1 to avoid
    # zero division.
    denominator = torch.where(
        denominator > 0, denominator, torch.ones_like(denominator)
    )
    iou = divide_no_nan(cm_diag, denominator)

    # If the number of valid entries is 0 (no classes) we return 0.
    mean_iou = torch.where(
        num_valid_entries > 0.0,
        torch.sum(iou) / num_valid_entries,
        torch.tensor(0, dtype=torch.float, device=iou.device),
    )
    return mean_iou


[docs]class MeanIOUMetric(Metric): """ Mean Intersection-Over-Union is a common evaluation metric for semantic image segmentation, which first computes the IOU for each semantic class and then computes the average over classes. iou is defined as follows: IOU = true_positive / (true_positive + false_positive + false_negative). The predictions are accumulated in a confusion matrix, weighted by `weights`, and mIOU is then calculated from it. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_iou`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: num_classes: The possible number of labels the prediction task can have. This value must be provided, since a confusion matrix of dimension = [num_classes, num_classes] will be allocated. name: Optional `string` which indicates name of the metric. If None or empty string, it defaults to the name of the class. """
[docs] def __init__( self, num_classes, ignore_classes: Optional[List[int]] = None, name: Optional[str] = None, ): self.num_classes = num_classes with torch.device("cpu"): # We want the mask to be computed on the CPU so that it can be # encoded into the graph as a constant self.mask = compute_mask(num_classes, ignore_classes) super().__init__(name=name)
[docs] def reset(self): self.register_state( "confusion_matrix", torch.zeros( (self.num_classes, self.num_classes), dtype=torch.float32 ), ) self._dtype = None
[docs] def update( self, labels, predictions, weights=None, dtype=None ): # pylint: disable=arguments-differ """ Updates the mean IOU metric. Args: labels: A `Tensor` of ground truth labels of type `int32` or `int64`. predictions: A `Tensor` of prediction results for semantic labels, of type `int32` or `int64`. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions` """ if labels.shape != predictions.shape: raise ValueError( f"`labels` and `predictions` have mismatched shapes. " f"Their shapes were {labels.shape} and {predictions.shape} respectively." ) if weights is not None: if weights.shape != labels.shape: raise ValueError( f"`labels`={labels.shape} and ", f"`weights`={weights.shape} have mismatched shapes", ) confusion_matrix = compute_confusion_matrix( labels=labels, predictions=predictions, num_classes=self.num_classes, weights=weights, on_device=cstorch.use_cs(), ) self.confusion_matrix.add_(confusion_matrix) self._dtype = dtype
[docs] def compute(self) -> torch.Tensor: mean_iou = compute_helper(self.confusion_matrix, self.mask) if self._dtype is not None: mean_iou = mean_iou.to(self._dtype) return mean_iou