Source code for cerebras.pytorch.metrics.fbeta_score

# Copyright 2016-2023 Cerebras Systems
# SPDX-License-Identifier: BSD-3-Clause

"""
F Beta Score metric for PyTorch.
Confusion matrix calculation in Pytorch referenced from:
https://github.com/pytorch/ignite/blob/master/ignite/metrics/confusion_matrix.py
"""
from typing import List, Optional

import torch

import cerebras.pytorch as cstorch
from cerebras.pytorch.metrics.metric import Metric
from cerebras.pytorch.metrics.utils import (
    compute_confusion_matrix,
    compute_mask,
    divide_no_nan,
)


def compute_helper(
    confusion_matrix,
    mask,
    beta: Optional[float] = 1.0,
    average_type: Optional[str] = "micro",
) -> float:
    """Helper function to compute fbeta score"""

    # true_pos = torch.diagonal(confusion_matrix).to(dtype=torch.float)
    # TODO: Use diagonal op when support is added (SW-91547)
    wgth_id = torch.eye(
        confusion_matrix.shape[0], device=confusion_matrix.device
    )
    true_pos = (wgth_id * confusion_matrix).sum(axis=-1, dtype=torch.float)
    predicted_per_class = confusion_matrix.sum(dim=0).type(torch.float)
    actual_per_class = confusion_matrix.sum(dim=1).type(torch.float)

    mask = cstorch.make_constant(mask)

    num_labels_to_consider = mask.sum()
    beta = torch.tensor(beta).to(torch.float)

    if average_type == "micro":
        precision = divide_no_nan(
            (true_pos * mask).sum(), (predicted_per_class * mask).sum()
        )
        recall = divide_no_nan(
            (true_pos * mask).sum(), (actual_per_class * mask).sum()
        )
        fbeta = divide_no_nan(
            (1.0 + beta**2) * precision * recall,
            (beta**2) * precision + recall,
        )
    else:  # "macro"
        precision_per_class = divide_no_nan(true_pos, predicted_per_class)
        recall_per_class = divide_no_nan(true_pos, actual_per_class)
        fbeta_per_class = divide_no_nan(
            (1.0 + beta**2) * precision_per_class * recall_per_class,
            (beta**2) * precision_per_class + recall_per_class,
        )
        precision = (precision_per_class * mask).sum() / num_labels_to_consider
        recall = (recall_per_class * mask).sum() / num_labels_to_consider
        fbeta = (fbeta_per_class * mask).sum() / num_labels_to_consider

    return fbeta


[docs]class FBetaScoreMetric(Metric): """Calculates F Score from labels and predictions. fbeta = (1 + beta^2) * (precision*recall) / ((beta^2 * precision) + recall) Where beta is some positive real factor. Args: num_classes: Number of classes. beta: Beta coefficient in the F measure. average_type: Defines the reduction that is applied. Should be one of the following: - 'micro' [default]: Calculate the metric globally, across all samples and classes. - 'macro': Calculate the metric for each class separately, and average the metrics across classes (with equal weights for each class). This does not take label imbalance into account. ignore_labels: Integer specifying a target classes to ignore. name: Name of the metric """
[docs] def __init__( self, num_classes, beta: float = 1.0, average_type: str = "micro", ignore_labels: Optional[List] = None, name: Optional[str] = None, ): if num_classes <= 1: raise ValueError( f"'num_classes' should be at least 2, got {num_classes}" ) self.num_classes = num_classes with torch.device("cpu"): # We want the mask to be computed on the CPU so that it can be # encoded into the graph as a constant self.mask = compute_mask(num_classes, ignore_labels) super().__init__(name=name) if beta <= 0: raise ValueError(f"'beta' should be a positive number, got {beta}") self.beta = beta allowed_average = ["micro", "macro"] if average_type not in allowed_average: raise ValueError( f"The average_type has to be one of {allowed_average}, " f"got {average_type}." ) self.average_type = average_type
[docs] def reset(self): self.register_state( "confusion_matrix", torch.zeros( (self.num_classes, self.num_classes), dtype=torch.float ), ) self._dtype = None
[docs] def update(self, labels, predictions, dtype=None): if labels.shape != predictions.shape: raise ValueError( f"`labels` and `predictions` have mismatched shapes. " f"Their shapes were {labels.shape} and {predictions.shape} respectively." ) confusion_matrix = compute_confusion_matrix( labels=labels, predictions=predictions, num_classes=self.num_classes, on_device=cstorch.use_cs(), ) self.confusion_matrix.add_(confusion_matrix) self._dtype = dtype
[docs] def compute(self) -> torch.Tensor: fbeta = compute_helper( self.confusion_matrix, self.mask, beta=self.beta, average_type=self.average_type, ) if self._dtype is not None: fbeta = fbeta.to(self._dtype) return fbeta