Source code for cerebras.modelzoo.data_preparation.nlp.extractive_summarisation_utils
# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import glob
import json
import logging
import os
from collections import defaultdict, namedtuple
from cerebras.modelzoo.data_preparation.nlp.bert.bertsum_data_processor import (
BertData,
RougeBasedLabelsFormatter,
)
logging.basicConfig(level=logging.INFO)
BertInputFeatures = namedtuple(
"BertInputFeatures", ["input_token_ids", "labels", "segment_ids", "cls_ids"]
)
[docs]class BertCSVFormatter:
[docs] def __init__(self, params):
"""
Converts input into bert format, sets extractive summarization
targets based on the rouge score between references and
input sentences.
:param params: dict params: BertData configuration parameters.
"""
self.bert_data = BertData(params)
self.labels_formatter = RougeBasedLabelsFormatter()
self.max_sequence_length = params.max_sequence_length
self.max_cls_tokens = params.max_cls_tokens
self.input_path = os.path.abspath(params.input_path)
self.output_path = os.path.abspath(params.output_path)
if not os.path.exists(self.output_path):
os.makedirs(self.output_path)
def _json_to_csv(self, json_input_file, csv_output_file, meta_data):
with open(json_input_file, "r") as fin, open(
csv_output_file, "w", newline=""
) as fout:
csv_writer = csv.DictWriter(
fout,
fieldnames=BertInputFeatures._fields,
quoting=csv.QUOTE_MINIMAL,
)
csv_writer.writeheader()
logging.info(
f"Converting {json_input_file} to CSV and saving in {csv_output_file}"
)
for i, data in enumerate(json.load(fin)):
source, target = data["src"], data["tgt"]
# Get sentences which are present in the summarization.
oracle_ids = self.labels_formatter.process(source, target, 3)
# Convert input into bert tf format.
bert_data = self.bert_data.process(source, target, oracle_ids)
if not bert_data:
logging.info(
f"Skipping index: {i} in {json_input_file}. Source or "
f"target field is empty."
)
continue
input_tokens, labels, segment_ids, cls_ids, _, _ = bert_data
bert_features = BertInputFeatures(
input_tokens, labels, segment_ids, cls_ids
)
csv_writer.writerow(bert_features._asdict())
meta_data[os.path.basename(csv_output_file)] += 1
def process(self):
logging.info(
f"Preparing to convert to bert format {self.input_path} to "
f"{self.output_path}."
)
for corpus_type in ["valid", "test", "train"]:
output_path = os.path.join(self.output_path, corpus_type)
if not os.path.exists(output_path):
os.makedirs(output_path)
input_files = glob.iglob(
os.path.join(self.input_path, f"{corpus_type}-*.json")
)
meta_data = defaultdict(int)
for input_file in input_files:
output_file = os.path.join(
output_path,
os.path.basename(input_file).replace("json", "csv"),
)
self._json_to_csv(input_file, output_file, meta_data)
logging.info(
f"Converted simplified JSON to CSV for {corpus_type} set. "
f"Writing metadata file."
)
meta_file = os.path.join(output_path, "meta.dat")
with open(meta_file, "w") as fout:
for output_file, num_lines in meta_data.items():
fout.write(f"{output_file} {num_lines}\n")
logging.info(
f"Done converting to CSV, files saved to {self.output_path}."
)