Source code for cerebras.modelzoo.data_preparation.nlp.data_dedup.to_hash

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import gc
import logging
import os
import pickle
import re
import string
import sys
import threading
import time
from collections import deque
from itertools import repeat
from multiprocessing import Lock, Pool, cpu_count

import ftfy
from datasketch import MinHash
from more_itertools import chunked
from nltk import ngrams

sys.path.append(os.path.join(os.path.dirname(__file__), "../../../"))
from cerebras.modelzoo.data_preparation.nlp.hdf5_preprocessing.utils import (
    Reader,
)

dq = deque()





[docs]def custom_progress_bar(animation_delay=0.5): chars = ['|', '/', '-', '\\'] progress = 0 doc_printer_thread = threading.Thread(target=print_docs_processed) doc_printer_thread.daemon = True doc_printer_thread.start() while True: sys.stdout.write(f'\rProcessing: [{chars[progress % len(chars)]}]') sys.stdout.flush() progress += 1 time.sleep(animation_delay)
[docs]def preprocess_string(s): # Lowercase the input string s = s.lower() # Remove punctuation s = s.translate(str.maketrans("", "", string.punctuation)) # Remove consecutive spaces, newlines, tabs in the middle and in the beginning / end s = re.sub(r"\s+", " ", s.strip()) return s
[docs]def get_features(s, width): s = preprocess_string(s) return map(lambda x: "".join(x), ngrams(s, width))
[docs]def clean(s): return preprocess_string(s)
[docs]def get_documents(input_dir, jsonl_key, format, threshold, job_id, n_jobs): files = [] gc.collect() all_files = [] for root, dirs, files in os.walk(input_dir): for file in files: all_files.append(os.path.join(root, file)) for file in all_files: parts = file.split('.')[1:] file_format = '.'.join(parts) if format == file_format: files.append(os.path.basename(file)) no_of_files = len(files) start = job_id * n_jobs end = start + (no_of_files // n_jobs) for index in range(start, end): input_file = files[index] file_path = os.path.join(input_dir, input_file) tokenizable_columns = {"jsonl_key": jsonl_key} reader = Reader(file_path, tokenizable_columns) for doc_id, doc in enumerate(reader.stream_data()): if len(clean(doc)) > threshold: yield doc, file_path, doc_id
[docs]def to_minhash(chunks): gc.collect() buckets = [] documents, output_dir, width, dataset_name = chunks for doc in documents: text, file_path, doc_id = doc[0], doc[1], doc[2] file_name = file_path.split("/")[-1] output_name = f"{dataset_name}/{file_name}" text = ftfy.fix_text(text, normalization="NFC") m = MinHash(num_perm=128) m.update_batch( map(lambda x: x.encode('utf8'), get_features(text, width)) ) buckets.append( { "file_name": output_name, "doc_id": doc_id, "hash": m, } ) return buckets
[docs]def output_results(output_dir, results, chunk_id, iter): with open( f"{output_dir}/minhash_nfc/{iter}-{chunk_id}.pickle", "wb" ) as fout: pickle.dump(results, fout)
[docs]def generate_hashes(args): lock = Lock() docs_processed = 0 if not os.path.exists(f"{args.output_dir}/minhash_nfc"): os.mkdir(f"{args.output_dir}/minhash_nfc") documents = get_documents( args.input_dir, args.jsonl_key, args.format, args.threshold, args.job_id, args.n_jobs, ) results = [] chunk_id = 0 gc.collect() with Pool(processes=cpu_count()) as pool: results_iterator = pool.imap( to_minhash, zip( chunked(documents, args.batch_size), repeat(args.output_dir), repeat(args.window_size), repeat(args.dataset_name), ), ) for i, chunks in enumerate(results_iterator): for chunk in chunks: if len(results) == args.batch_size: with lock: docs_processed += args.batch_size dq.append(docs_processed) output_results( args.output_dir, results, chunk_id, args.job_id ) del results gc.collect() results = [] chunk_id += 1 results.append(chunk) if results: with lock: docs_processed += len(results) logging.info(f"\nFinal document count: {docs_processed}") output_results(args.output_dir, results, chunk_id, args.job_id)
if __name__ == "__main__": logging.basicConfig(level=logging.INFO) parser = argparse.ArgumentParser() parser.add_argument( "--dataset_name", type=str, help="Name of the dataset being processed.", required=True, ) parser.add_argument( "--input_dir", type=str, help="Input directory which contains documents.", required=True, ) parser.add_argument( "--output_dir", type=str, help="Output directory to output MinHash files to.", required=True, ) parser.add_argument( "--job_id", type=int, help="Job ID", default=0, required=False ) parser.add_argument( "--jsonl_key", type=str, default="text", help="JSONL key for the dataset", required=False, ) parser.add_argument( "--format", type=str, default="jsonl", help="Format of the dataset that needs to be processed.", required=False, ) parser.add_argument( "--threshold", type=int, default=0, help="Minimum size of documents that need to be present.", required=False, ) parser.add_argument( "--window_size", type=int, default=6, help="Window size", required=False ) parser.add_argument( "--batch_size", type=int, default=100, help="Number of batches to output with.", required=False, ) parser.add_argument( "--docs_per_core", type=int, default=1000, help="Number of documents that will be processed by each core.", required=False, ) parser.add_argument( "--n_jobs", type=int, default=1, help="Number of jobs to be spawned for parallel execution", required=False, ) args = parser.parse_args() progress_thread = threading.Thread(target=custom_progress_bar) progress_thread.daemon = True progress_thread.start() generate_hashes(args)