Source code for cerebras.modelzoo.data.multimodal.llava.LlavaHDF5MapDataProcessor

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from cerebras.modelzoo.common.registry import registry
from cerebras.modelzoo.data.common.h5_map_dataset import (
    MultiModalHDF5Dataset,
    RestartableDataLoader,
)


[docs]@registry.register_datasetprocessor("LlavaHDF5MapDataProcessor") class LlavaHDF5MapDataProcessor:
[docs] def __init__(self, params): self.dataset = MultiModalHDF5Dataset(params) if not self.dataset.by_sample: raise NotImplementedError( "Training with 'corpus' format data is not currently supported " "Please switch to 'sample' format." ) if params.get("use_vsl", False): raise NotImplementedError( "Variable sequence length (VSL) training is not" "currently supported." ) features_list = [ "text_input_ids", # input_ids <-> text_input_ids "loss_mask", # input_mask <-> loss_mask "labels", "attention_span", "position_ids", "key_padding_mask", # attention_mask <-> key_padding_mask ] if "dataset_map_fn" in params: self.dataset.map(params["dataset_map_fn"]) else: self.dataset.map( lambda x: { feature: x[idx] for idx, feature in enumerate(features_list) } ) self.num_workers = params.get("num_workers", 0) self.prefetch_factor = params.get("prefetch_factor", 10) self.persistent_workers = params.get("persistent_workers", True) if not self.num_workers: self.prefetch_factor = None # the default value in DataLoader self.persistent_workers = False
def create_dataloader(self): return RestartableDataLoader( self.dataset, batch_sampler=self.dataset.sampler, num_workers=self.num_workers, prefetch_factor=self.prefetch_factor, persistent_workers=self.persistent_workers, )