Source code for cerebras.modelzoo.trainer.loggers.progress

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Contains the Logging class that handles setting up and logging to the standard Python logger."""

from __future__ import annotations

from typing import TYPE_CHECKING, List, Optional

import torch

import cerebras.pytorch as cstorch
from cerebras.modelzoo.common.half_dtype import cb16_to_fp32
from cerebras.modelzoo.trainer.callbacks import RateProfiler
from cerebras.modelzoo.trainer.loggers import Logger
from cerebras.pytorch.utils.data.utils import infer_batch_size

if TYPE_CHECKING:
    from ..trainer import Trainer


[docs]class ProgressLogger(Logger): """ Callback that handles setting up and logging to the standard Python logger. """ def __init__(self): """Sets up the rate tracker and total samples tracker.""" self.rate_profiler = None # Keep track of the total samples processed # across all stages self.total_samples = cstorch.utils.tracker.RateTracker() self.accum_loss = None def setup(self, trainer): self.rate_profiler = trainer.get_callback(RateProfiler)
[docs] @staticmethod def format_rate(rate: float): """Format the rate for logging. Use two significant digits if the rate is less than 1.0, otherwise use two decimal places. Args: rate: Rate to format. """ if rate < 1.0: return f"{rate:.2g} samples/sec" return f"{rate:.2f} samples/sec"
@property def postfix(self) -> List[str]: """Returns the postfix to append to the progress message.""" if self.rate_profiler is not None: rate = self.rate_profiler.rate global_rate = self.rate_profiler.global_rate return [ f"Rate={self.format_rate(rate)}", f"GlobalRate={self.format_rate(global_rate)}", ] return [] def on_fit_start(self, trainer, train_dataloader, val_dataloader, loop): self.total_samples.reset() def on_train_batch_end(self, trainer, model, outputs, batch, batch_idx): batch_size = infer_batch_size(batch) if batch_size: self.total_samples.add(batch_size) loss = cb16_to_fp32(outputs["loss"]) self.print_training_progress(trainer, loss, batch_size)
[docs] @cstorch.step_closure def print_training_progress( self, trainer: Trainer, loss: torch.Tensor, batch_size: Optional[int] ): """Print training progress and log metrics.""" if trainer.should_run_optimizer_step: if self.accum_loss is not None: loss = self.accum_loss + loss.item() self.accum_loss = None else: loss = loss.item() if trainer.is_log_step: progress_msg = [ f"| Train Device={trainer.backend.device}", f"Step={trainer.global_step}", f"Loss={loss:.5f}", *self.postfix, ] trainer.logger.info(", ".join(progress_msg)) self._log_loss_rate_metrics(trainer, loss, batch_size) else: # accumulate loss for gradient accumulation if self.accum_loss is None: self.accum_loss = loss.item() else: self.accum_loss += loss.item()
def on_train_end(self, trainer, model, loop, loop_idx): trainer.logger.info("Training completed successfully!") def on_validate_start(self, trainer, model, val_dataloader, loop): # pylint: disable=attribute-defined-outside-init self.total_eval_loss = 0 self.total_eval_steps = 0 def on_validate_batch_end(self, trainer, model, outputs, batch, batch_idx): loss = cb16_to_fp32(outputs["loss"]) self.print_validation_progress(trainer, loss, infer_batch_size(batch))
[docs] @cstorch.step_closure def print_validation_progress( self, trainer: Trainer, loss: torch.Tensor, batch_size: Optional[int], ): """Print validation progress and log metrics.""" self.total_eval_loss += loss.item() self.total_eval_steps += 1 if trainer.is_log_step: progress_msg = [ f"| Eval Device={trainer.backend.device}", f"GlobalStep={trainer.global_step}", f"Batch={trainer.executor.user_iteration}", f"Loss={loss.item():.5f}", *self.postfix, ] trainer.logger.info(", ".join(progress_msg)) if trainer.is_final_iteration: avg_eval_loss = self.total_eval_loss / self.total_eval_steps trainer.logger.info(f"Avg Eval Loss: {avg_eval_loss}") self._log_loss_rate_metrics(trainer, avg_eval_loss, batch_size)
def on_validate_end(self, trainer, model, loop): trainer.logger.info("Evaluation completed successfully!") def on_fit_end(self, trainer, loop): # pylint: disable=protected-access if trainer.backend._impl.is_e2e_execution: trainer.logger.info( f"Processed {int(self.total_samples.total_count)} training sample(s) " f"in {self.total_samples.elapsed_seconds()} seconds." ) def on_fit_exception(self, trainer, exception): self.on_fit_end(trainer, None) def log_metrics(self, metrics, step): pass def _log_loss_rate_metrics( self, trainer: Trainer, loss: float, batch_size: Optional[int] ): trainer.log_metrics(loss=loss) if self.rate_profiler: metrics = { "local_samples_per_sec": self.rate_profiler.rate, "avg_samples_per_sec": self.rate_profiler.global_rate, } if batch_size: metrics["avg_steps_per_sec"] = ( self.rate_profiler.global_rate / batch_size ) trainer.log_metrics(**metrics)