# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from typing import Tuple
import torch
from cerebras.modelzoo.tools.checkpoint_converters.base_converter import (
BaseCheckpointConverter_HF_CS,
BaseConfigConverter,
ConversionRule,
EquivalentSubkey,
FormatVersions,
)
from cerebras.modelzoo.tools.checkpoint_converters.gpt2_hf_cs import (
ConfigConverter_GPT2Model_HF_CS20,
Converter_GPT2LMHeadModel_CS20_CS21,
Converter_GPT2Model_HF_CS17,
)
from cerebras.modelzoo.tools.checkpoint_converters.helper import (
Build_HF_CS_Converter_WithOptionalModel,
transpose_key_if_2D,
)
[docs]class Converter_Santacoder_Attention_HF_CS(BaseCheckpointConverter_HF_CS):
def __init__(self):
super().__init__()
self.rules = [
ConversionRule(
[
EquivalentSubkey("c_proj", "proj_output_dense_layer"),
r"\.(?:weight|bias)",
],
action=transpose_key_if_2D,
),
ConversionRule(
[
EquivalentSubkey("q_attn", "proj_q_dense_layer"),
r"\.(?:weight|bias)",
],
action=transpose_key_if_2D,
),
ConversionRule(
[
EquivalentSubkey("kv_attn", "proj_k_dense_layer"),
r"\.(?:weight|bias)",
],
action=self.kv_attn_converter,
),
ConversionRule(
[
EquivalentSubkey("kv_attn", "proj_v_dense_layer"),
r"\.(?:weight|bias)",
],
action=self.assert_already_converted,
),
]
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("hf"), FormatVersions("cs-X.X"))
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return None
def kv_attn_converter(
self,
old_key,
new_key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
):
if from_index == 0:
self.kv_attn_converter_hf_to_cs(
old_key, new_key, old_state_dict, new_state_dict, action_fn_args
)
else:
self.kv_attn_converter_cs_to_hf(
old_key, new_key, old_state_dict, new_state_dict, action_fn_args
)
def kv_attn_converter_hf_to_cs(
self, old_key, new_key, old_state_dict, new_state_dict, action_fn_args
):
# HF represents K and V in a packed format. We need to unpack the
# weight and bias tensor for CS format.
k_key = new_key
v_key = re.sub(r"\.proj_k_dense_layer\.", ".proj_v_dense_layer.", k_key)
if new_key.endswith(".bias"):
assert len(old_state_dict[old_key].shape) == 1
(
new_state_dict[k_key],
new_state_dict[v_key],
) = torch.chunk(old_state_dict[old_key], 2, dim=0)
elif new_key.endswith(".weight"):
(
new_state_dict[k_key],
new_state_dict[v_key],
) = torch.chunk(
torch.transpose(old_state_dict[old_key], 0, 1), 2, dim=0
)
else:
raise ValueError("Invalid key after conversion: {}".format(new_key))
def kv_attn_converter_cs_to_hf(
self,
old_key,
new_key,
old_state_dict,
new_state_dict,
action_fn_args,
):
# HF represents K and V in a packed format. It also contains
# special ".bias" and ".masked_bias" register buffers that need to be
# initialize
k_key = old_key
v_key = re.sub(r"\.proj_k_dense_layer\.", ".proj_v_dense_layer.", k_key)
assert (
k_key in old_state_dict
), "Expected the following key to exist! {}".format(k_key)
assert (
v_key in old_state_dict
), "Expected the following key to exist! {}".format(v_key)
new_state_dict[new_key] = torch.cat(
(
old_state_dict[k_key],
old_state_dict[v_key],
),
dim=0,
)
# Need to transpose to convert from Linear.weight -> Conv1D.weight
if len(new_state_dict[new_key].shape) == 2:
new_state_dict[new_key] = torch.transpose(
new_state_dict[new_key], 0, 1
)
if new_key.endswith(".bias"):
max_position_embeddings = action_fn_args["configs"][1]["model"][
"max_position_embeddings"
]
attn_bias_key = re.sub(r"\.kv_attn\.", ".", new_key)
new_state_dict[attn_bias_key] = torch.tril(
torch.ones(
(max_position_embeddings, max_position_embeddings),
dtype=torch.uint8,
)
).view(1, 1, max_position_embeddings, max_position_embeddings)
masked_bias_key = re.sub(r"\.kv_attn\.", ".masked_", new_key)
new_state_dict[masked_bias_key] = torch.tensor(-1e4)
def assert_already_converted(
self,
old_key,
new_key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
):
if from_index == 0:
# We should never hit this case as this key should have been matched
# already
assert False, "Invalid key: {}".format(old_key)
else:
# When we convert from CS -> HF, the proj_q_dense_layer should also handle
# conversion of proj_k_dense_layer and proj_v_dense_layer since HF
# represents these three layers in a packed format. We simply need
# to test that the key containing the packed format has already
# been converted.
assert (
new_key in new_state_dict
), "Key should've been already converted: {} -> {}".format(
old_key, new_key
)
# This is a base converter for Santacoder that inherits from GPT-2
# CS17 converter that contains most of the rules necessary for
# converting GPT-2 checkpoints. This class is meant to be used as
# an action within the rules of the CS-2.0 converter below,
# that catches checkpoints from Pytorch 2.0 API and PyTorchBaseModel.
# It is not meant for use on its own, because this model was not
# included in the codebase before release 2.0. Note that we include a
# a formats() method in this class and the SantacoderLMHeadModel
# converter below because it is a required method, due to the
# declaration as an @abstractmethod in the BaseDictionaryConverter.
# The cs-X.X in the formats() method is meant to call this to attention
[docs]class Converter_SantacoderModel_HF_CS(Converter_GPT2Model_HF_CS17):
def attention_converter_class(self):
return Converter_Santacoder_Attention_HF_CS()
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("hf"), FormatVersions("cs-X.X"))
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_SantacoderModel_HF_CS20
[docs]class Converter_SantacoderLMHeadModel_HF_CS(BaseCheckpointConverter_HF_CS):
def __init__(self):
super().__init__()
self.rules = [
ConversionRule(
[r"lm_head\.(?:weight|bias)"],
action=self.replaceKey,
),
ConversionRule(
[
EquivalentSubkey("transformer.", ""),
Converter_SantacoderModel_HF_CS(),
],
action=None,
),
]
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("hf"), FormatVersions("cs-X.X"))
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_SantacoderModel_HF_CS20
[docs]class Converter_SantacoderModel_HF_CS20(Converter_SantacoderModel_HF_CS):
def __init__(self):
super().__init__()
self.rules = [
# Catch checkpoints from Pytorch 2.0 API
ConversionRule(
[
Converter_SantacoderModel_HF_CS(),
],
action=None,
),
# Catch checkpoints from deprecated PyTorchBaseModel
ConversionRule(
[
EquivalentSubkey("", "model."),
Converter_SantacoderModel_HF_CS(),
],
action=None,
),
]
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("hf"), FormatVersions("cs-2.0"))
@classmethod
def converter_note(cls) -> str:
return (
"{} GPT2CustomModel <-> {} GPT2LMHeadModel (configured as SantaCoder)\n"
"The HF model doesn't contain a language model head while the CS "
"one does. When converting to CS, the exported checkpoint will "
"contain a language model head initialized to default random "
"values. When converting to HF, the language model head will be "
"dropped."
).format(cls.formats()[0], cls.formats()[1])
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_SantacoderModel_HF_CS20
[docs]class Converter_SantacoderLMHeadModel_HF_CS20(BaseCheckpointConverter_HF_CS):
def __init__(self):
super().__init__()
self.rules = [
# Catch checkpoints from Pytorch 2.0 API
ConversionRule(
[
Converter_SantacoderLMHeadModel_HF_CS(),
],
action=None,
),
# Catch checkpoints from deprecated PyTorchBaseModel
ConversionRule(
[
EquivalentSubkey("", "model."),
Converter_SantacoderLMHeadModel_HF_CS(),
],
action=None,
),
]
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("hf"), FormatVersions("cs-2.0"))
@classmethod
def converter_note(cls) -> str:
return "{} GPT2LMHeadCustomModel <-> {} GPT2LMHeadModel (configured as SantaCoder)".format(
cls.formats()[0], cls.formats()[1]
)
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_SantacoderModel_HF_CS20
[docs]class ConfigConverter_SantacoderModel_HF_CS20(
ConfigConverter_GPT2Model_HF_CS20
):
def __init__(self):
super().__init__()
self.rules = [
ConversionRule(
[
EquivalentSubkey(
"scale_attn_by_inverse_layer_idx",
"scale_qk_dot_by_layer_idx",
)
],
action=self.replaceKey,
),
ConversionRule(
["attention_head_type"],
action=BaseConfigConverter.assert_factory_fn(0, "multiquery"),
),
ConversionRule(
["attention_module"],
action=BaseConfigConverter.assert_factory_fn(
1, "multiquery_attention"
),
),
ConversionRule(
["extra_attention_params"],
action=BaseConfigConverter.assert_factory_fn(
1, {"num_kv_groups": 1}
),
),
*self.rules,
]
self.post_convert_defaults[0].update(
{
"architectures": ["GPT2LMHeadCustomModel"],
"attention_head_type": "multiquery",
"scale_attn_by_inverse_layer_idx": False,
"scale_attn_weight": True,
"auto_map": {
"AutoConfig": "configuration_gpt2_mq.GPT2CustomConfig",
"AutoModelForCausalLM": "modeling_gpt2_mq.GPT2LMHeadCustomModel",
},
"model_type": "gpt2",
"reorder_and_upcast_attn": False,
"summary_activation": None,
"summary_first_dropout": 0.1,
"summary_proj_to_labels": True,
"summary_type": "cls_index",
"summary_use_proj": True,
"torch_dtype": "float32",
"transformers_version": "4.24.0",
"use_cache": True,
},
)
self.post_convert_defaults[1].update(
{
"position_embedding_type": "learned",
"attention_module": "multiquery_attention",
"softmax_dtype_fp32": False,
"scale_by_layer_index": False,
"extra_attention_params": {"num_kv_groups": 1},
"use_projection_bias_in_attention": True,
"use_ffn_bias_in_attention": True,
"use_ffn_bias": True,
"loss_scaling": "num_tokens",
"use_bfloat16": True,
},
)
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (FormatVersions("hf"), FormatVersions("cs-2.0"))
###########################################################
# In CS 2.1, we refactored the embedding layer.
###########################################################
[docs]class Converter_SantacoderLMHeadModel_CS20_CS21(
Converter_GPT2LMHeadModel_CS20_CS21
):
@classmethod
def converter_note(cls) -> str:
return "GPT2LMHeadModel class (configured as Santacoder)"
[docs]class ConfigConverter_SantacoderModel_HF_CS21(
ConfigConverter_SantacoderModel_HF_CS20
):
def __init__(self) -> None:
super().__init__()
del self.post_convert_defaults[1]["use_bfloat16"]
self.post_convert_defaults[1].update({"fp16_type": "bfloat16"})
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (
FormatVersions("hf"),
FormatVersions("cs-2.1", "cs-2.2", "cs-2.3", "cs-2.4"),
)
def supports_mup_conversion(self):
return True
[docs]class Converter_SantacoderModel_WithoutOptionalModel_HF_CS21(
Converter_SantacoderModel_HF_CS
):
def __init__(self):
super().__init__()
self.rules = [
ConversionRule(
[
EquivalentSubkey(
"wpe", "embedding_layer.position_embeddings.embed"
),
"\.(?:weight|bias)",
],
action=self.replaceKey,
),
*self.rules,
]
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (
FormatVersions("hf"),
FormatVersions("cs-2.1", "cs-2.2", "cs-2.3", "cs-2.4"),
)
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_SantacoderModel_HF_CS21
@classmethod
def converter_note(cls) -> str:
return (
"{} GPT2CustomModel <-> {} GPT2LMHeadModel (configured as SantaCoder)\n"
"The HF model doesn't contain a language model head while the CS "
"one does. When converting to CS, the exported checkpoint will "
"contain a language model head initialized to default random "
"values. When converting to HF, the language model head will be "
"dropped."
).format(cls.formats()[0], cls.formats()[1])
Converter_SantacoderModel_HF_CS21 = Build_HF_CS_Converter_WithOptionalModel(
"Converter_SantacoderModel_HF_CS21",
Converter_SantacoderModel_WithoutOptionalModel_HF_CS21,
derived_class=Converter_SantacoderModel_WithoutOptionalModel_HF_CS21,
)
[docs]class Converter_SantacoderLMHeadModel_WithoutOptionalModel_HF_CS21(
BaseCheckpointConverter_HF_CS
):
def __init__(self):
super().__init__()
self.rules = [
ConversionRule(
[r"lm_head\.(?:weight|bias)"],
action=self.replaceKey,
),
ConversionRule(
[
EquivalentSubkey("transformer.", ""),
Converter_SantacoderModel_WithoutOptionalModel_HF_CS21(),
],
action=None,
),
]
@staticmethod
def formats() -> Tuple[FormatVersions, FormatVersions]:
return (
FormatVersions("hf"),
FormatVersions("cs-2.1", "cs-2.2", "cs-2.3", "cs-2.4"),
)
@staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_SantacoderModel_HF_CS21
@classmethod
def converter_note(cls) -> str:
return "{} GPT2LMHeadCustomModel <-> {} GPT2LMHeadModel (configured as SantaCoder)".format(
cls.formats()[0], cls.formats()[1]
)
def supports_mup_conversion(self):
return True
Converter_SantacoderLMHeadModel_HF_CS21 = Build_HF_CS_Converter_WithOptionalModel(
"Converter_SantacoderLMHeadModel_HF_CS21",
Converter_SantacoderLMHeadModel_WithoutOptionalModel_HF_CS21,
derived_class=Converter_SantacoderLMHeadModel_WithoutOptionalModel_HF_CS21,
)