Source code for cerebras.modelzoo.losses.DPOLoss

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Based on https://github.com/huggingface/trl/blob/main/trl/trainer/dpo_trainer.py
from typing import Literal

import torch
import torch.nn as nn
import torch.nn.functional as F

DPOLossType = Literal["sigmoid", "hinge", "ipo", "dpop"]


[docs]class DPOLoss(nn.Module): """ DPO Loss :param beta: Temperature parameter for the DPO loss, typically something in the range of 0.1 to 0.5. We ignore the reference model as beta -> 0. :param reference_free: If True, we ignore the _provided_ reference model and implicitly use a reference model that assigns equal probability to all responses. """ def __init__( self, beta: float = 0.1, loss_type: DPOLossType = "sigmoid", reference_free: bool = False, dpop_penalty_weight: float = 5.0, ): super(DPOLoss, self).__init__() self.beta = beta self.loss_type = loss_type self.reference_free = reference_free # The following corresponds to lambda in the DPOP paper (https://arxiv.org/pdf/2402.13228) self.dpop_penalty_weight = dpop_penalty_weight def forward( self, policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps, ): pi_logratios = policy_chosen_logps - policy_rejected_logps if self.reference_free: ref_logratios = 0 else: ref_logratios = reference_chosen_logps - reference_rejected_logps logits = pi_logratios - ref_logratios if self.loss_type == "sigmoid": losses = -F.logsigmoid(self.beta * logits) elif self.loss_type == "hinge": losses = torch.relu(1 - self.beta * logits) elif self.loss_type == "ipo": losses = torch.pow(logits - 1 / (2 * self.beta), 2.0) elif self.loss_type == "dpop": dpop_penalty = torch.clamp( reference_chosen_logps - policy_chosen_logps, min=0.0 ) logits = logits - self.dpop_penalty_weight * dpop_penalty losses = -F.logsigmoid(self.beta * logits) else: raise ValueError( f"Unknown loss type: {self.loss_type}. Should be one of {DPOLossType}" ) return losses.mean()