# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
[docs]class NLGTokenGenerator:
"""Token Generator for NLG data sets such as E2E, DART, and WebNLG.
Assumes the dataset has already been tokenized.
Expect .jsonl input files that contains a "context" and a "completion" key.
Used with GptHDF5DataProcessor.
"""
def __init__(self, max_seq_length):
self.max_seq_length = max_seq_length
self.features = ["input_ids", "attention_mask", "labels"]
def encode(self, semantic_data_array):
context, completion = self.parse_semantic_data_array(
semantic_data_array
)
raw_chars_count = 0 ## As the dataset is already tokenized into tokens. Raw dataset is not available.
raw_bytes_count = 0 ## As the dataset is already tokenized into tokens. Raw dataset is not available.
files_processed = 0
discarded_files = 0
normalized_chars_count = raw_chars_count
normalized_bytes_count = raw_bytes_count
input_ids = np.concatenate((context, completion[:-1]))
labels = np.concatenate((context[1:], completion))
num_pad_tokens = self.max_seq_length - len(input_ids)
num_masked_tokens = self.max_seq_length - len(completion)
input_ids = np.pad(input_ids, (0, self.max_seq_length - len(input_ids)))
labels = np.pad(labels, (0, self.max_seq_length - len(labels)))
indices = np.arange(self.max_seq_length)
attention_mask = np.where(indices < len(context) - 1, 0, indices)
attention_mask = np.where(
attention_mask >= len(context) - 1 + len(completion),
0,
attention_mask,
)
attention_mask = np.where(attention_mask != 0, 1, 0)
sample = np.stack([input_ids, attention_mask, labels]).reshape(
1, 3, self.max_seq_length
)
loss_valid_tokens = int(attention_mask.sum())
num_tokens = int(input_ids.shape[0])
if sample.size == 0:
discarded_files += 1
files_processed += 1
data_stats = {
"discarded": discarded_files,
"processed": files_processed,
"successful": files_processed - discarded_files,
"raw_chars_count": raw_chars_count,
"raw_bytes_count": raw_bytes_count,
"num_pad_tokens": num_pad_tokens,
"num_masked_tokens": num_masked_tokens,
"loss_valid_tokens": loss_valid_tokens,
"num_tokens": num_tokens,
"normalized_chars_count": normalized_chars_count,
"normalized_bytes_count": normalized_bytes_count,
}
data = {"data": sample}
return data, data_stats
def parse_semantic_data_array(self, semantic_data_array):
context = semantic_data_array[0]['content'][0]['text']
completion = semantic_data_array[1]['content'][0]['text']
return context, completion