# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Literal, Optional
import torchvision
from pydantic import Field
from cerebras.modelzoo.data.vision.classification.dataset_factory import (
VisionClassificationProcessor,
VisionClassificationProcessorConfig,
)
[docs]class DTDProcessorConfig(VisionClassificationProcessorConfig):
data_processor: Literal["DTDProcessor"]
use_worker_cache: bool = ...
split: Literal["train", "val", "test"] = "train"
"Dataset split."
num_classes: Optional[Any] = Field(None, deprecated=True)
[docs]class DTDProcessor(VisionClassificationProcessor):
def __init__(self, config: DTDProcessorConfig):
super().__init__(config)
self.split = config.split
self.shuffle = self.shuffle and (self.split == "train")
self.num_classes = 47
def create_dataset(self):
use_training_transforms = self.split == "train"
transform, target_transform = self.process_transform(
use_training_transforms
)
dataset = torchvision.datasets.DTD(
root=self.data_dir,
split=self.split,
transform=transform,
target_transform=target_transform,
download=False,
)
return dataset