Source code for cerebras.modelzoo.data.nlp.gpt.HuggingFaceDataProcessorEli5

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Pytorch HuggingFace Eli5 map-style Dataloader"""

from typing import Any, Literal, Optional

from pydantic import Field

from cerebras.modelzoo.data_preparation.huggingface.HuggingFace_Eli5 import (
    HuggingFace_Eli5,
)
from cerebras.modelzoo.data_preparation.huggingface.HuggingFaceDataProcessor import (
    HuggingFaceDataProcessor,
    HuggingFaceDataProcessorConfig,
)


[docs]class HuggingFaceDataProcessorEli5Config(HuggingFaceDataProcessorConfig): data_processor: Literal["HuggingFaceDataProcessorEli5"] split: str = "train" data_dir: Optional[Any] = Field(None, deprecated=True)
[docs]class HuggingFaceDataProcessorEli5(HuggingFaceDataProcessor): """ A HuggingFace Eli5 map-style Data Processor. Args: config: The configuration object """ def __init__(self, config: HuggingFaceDataProcessorEli5Config): if isinstance(config, dict): config = HuggingFaceDataProcessorEli5Config(**config) self.dataset, self.data_collator = HuggingFace_Eli5( split=config.split, num_workers=config.num_workers ) # The super class will take care of sharding the dataset and creating the dataloader super().__init__(config, self.dataset)