Source code for cerebras.modelzoo.data.nlp.bert.BertHDF5DataProcessor

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Processor for PyTorch BERT training.
"""

import json
import os
from typing import Any, Callable, Literal, Optional

from pydantic import Field

from cerebras.modelzoo.data.common.h5_map_dataset import MLMHDF5Dataset
from cerebras.modelzoo.data.common.HDF5DataProcessor import (
    HDF5DataProcessorConfig,
)
from cerebras.modelzoo.data.common.restartable_dataloader import (
    RestartableDataLoader,
)


[docs]class BertHDF5DataProcessorConfig(HDF5DataProcessorConfig): data_processor: Literal["BertHDF5DataProcessor"] dataset_map_fn: Optional[Callable] = None num_workers: int = 0 "The number of PyTorch processes used in the dataloader." prefetch_factor: Optional[int] = 10 "The number of batches to prefetch in the dataloader." persistent_workers: bool = True "Whether or not to keep workers persistent between epochs." # The following fields are deprecated and unused. # They will be removed in the future once all configs have been fixed vocab_size: Optional[Any] = Field(default=None, deprecated=True) def post_init(self, context): super().post_init(context) if not self.num_workers: self.prefetch_factor = None # the default value in DataLoader self.persistent_workers = False
[docs]class BertHDF5DataProcessor: def __init__(self, config: BertHDF5DataProcessorConfig): self.dataset = MLMHDF5Dataset(config) features_list = { "data": ["input_ids", "attention_mask"], "labels": ["labels"], } data_params_path = os.path.join( self.dataset.data_dir, "data_params.json" ) self.mlm = False with open(data_params_path, 'r') as file: data_params = json.load(file) dataset_params = data_params.get("dataset", None) mlm_with_gather = dataset_params.get("mlm_with_gather", False) training_objective = dataset_params.get("training_objective", None) self.mlm = ( (training_objective == 'mlm') if training_objective is not None else False ) if self.mlm and mlm_with_gather: features_list["labels"].extend( ["masked_lm_positions", "masked_lm_mask"] ) if config.use_vsl: if self.dataset.by_sample: features_list["data"].extend(["attention_span", "position_ids"]) else: raise NotImplementedError( "Variable sequence length (VSL) training is not " "currently supported with 'corpus' format data. Please " "switch to 'sample' format data to use VSL." ) if config.dataset_map_fn is not None: self.dataset.map(config.dataset_map_fn) elif self.dataset.by_sample: self.dataset.map( lambda x: { feature: x[key][idx] for key, value in features_list.items() for idx, feature in enumerate(value) } ) else: raise NotImplementedError( "MLM mode is not " "currently supported with 'corpus' format data. Please " "switch to 'sample' format data to use MLM." ) self.num_workers = config.num_workers self.prefetch_factor = config.prefetch_factor self.persistent_workers = config.persistent_workers def create_dataloader(self): return RestartableDataLoader( self.dataset, batch_sampler=self.dataset.sampler, num_workers=self.num_workers, prefetch_factor=self.prefetch_factor, persistent_workers=self.persistent_workers, )