Source code for cerebras.modelzoo.data.multimodal.clip.ImageNet1KClipProcessor

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, List, Literal, Optional

import torch
import torchvision
from pydantic import Field, PositiveInt
from transformers import CLIPTokenizerFast

import cerebras.pytorch as cstorch
from cerebras.modelzoo.data.common.restartable_dataloader import (
    RestartableDataLoader,
)
from cerebras.modelzoo.data.vision.classification.data.imagenet import (
    ImageNet1KProcessor,
    ImageNet1KProcessorConfig,
)
from cerebras.modelzoo.data.vision.classification.dataset_factory import (
    VisionSubset,
)


def _verify_dataset(dataset):
    """
    Verify the dataset type is compatible with ImageNet.
    """
    assert (
        isinstance(dataset, torchvision.datasets.VisionDataset)
        or isinstance(dataset, VisionSubset)
        or isinstance(dataset, torch.utils.data.Subset)
    ), (
        f"Got {type(dataset)} but dataset must be type "
        "VisionDataset, VisionSubset, or torch.utils.data.Subset"
    )


[docs]class ImageNet1KClipProcessorConfig(ImageNet1KProcessorConfig): data_processor: Literal['ImageNet1KClipProcessor'] patch_size: Optional[List[int]] = None "Size of patches to use when converting input image to patches, [Height, Width]." image_channels: Optional[int] = None "Number of image channels." text_max_length: PositiveInt = 77 """ # the maximum length of tokens for label text after tokenization. # ref: https://huggingface.co/openai/clip-vit-base-patch16/blob/main/config.json#L45 """ max_sequence_length: Optional[Any] = Field(default=None, deprecated=True)
[docs]class ImageNet1KClipProcessor(ImageNet1KProcessor): def __init__(self, config: ImageNet1KClipProcessorConfig): super().__init__(config) self.patch_size = config.patch_size self.image_channels = config.image_channels self.template = "this is a photo of <>." self.tokenizer = CLIPTokenizerFast.from_pretrained( "openai/clip-vit-base-patch16" ) self.text_max_length = config.text_max_length def clip_collate_fn(self, data): assert self.classes is not None, "Need class names to construct samples" input_images = torch.stack([d[0] for d in data]) # [bs, c, h, w] # labels = torch.stack([d[1] for d in data]) # [bs, c, h, w] labels = [] for d in data: label = d[1] class_name = self.classes[label][0] # always choose the first label labels.append(self.template.replace("<>", class_name)) # tokenize labels = self.tokenizer( labels, max_length=self.text_max_length, padding="max_length", return_tensors="pt", ) results = {} results["input_images"] = input_images results["input_ids_text"] = labels["input_ids"] results["attention_mask_text"] = labels["attention_mask"] return results def create_dataloader(self): dataset = self.create_dataset() _verify_dataset(dataset) self.classes = dataset.classes shuffle = self.shuffle and (self.split == "train") if self.shuffle_seed is None: self.shuffle_seed = 0 data_sampler = cstorch.utils.data.DistributedSampler( data_source=dataset, shuffle=shuffle, seed=self.shuffle_seed, shard=True, batch_size=self.global_batch_size, drop_last=self.drop_last, ) dataloader = RestartableDataLoader( dataset, batch_sampler=data_sampler, num_workers=self.num_workers, pin_memory=self.distributed, prefetch_factor=self.prefetch_factor, persistent_workers=self.persistent_workers, worker_init_fn=self._worker_init_fn, ) dataloader.collate_fn = self.clip_collate_fn return dataloader