Source code for cerebras.modelzoo.data.common.h5_map_dataset.dataset

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
from typing import List, Optional, Union

import numpy
import torch
from PIL import Image
from pydantic import PositiveInt, model_validator

import cerebras.pytorch as cstorch
import cerebras.pytorch.distributed as dist
from cerebras.modelzoo.common.input_utils import PaddingSample
from cerebras.modelzoo.config import BaseConfig
from cerebras.modelzoo.data.vision.preprocessing import get_preprocess_transform
from cerebras.modelzoo.data.vision.utils import create_worker_cache
from cerebras.pytorch.utils.data.sampler import pad_index

from .readers import H5Reader, Mixture


[docs]class HDF5DatasetConfig(BaseConfig): data_dir: Union[str, List[str], None] = None """ The path to the HDF5 files. Exactly one of "data_dir" or "mixture" must be specified. """ batch_size: PositiveInt = ... """ The batch size """ shuffle: bool = False """ Whether or not to shuffle the dataset. """ shuffle_seed: int = 0 """ The seed used for deterministic shuffling. """ use_worker_cache: bool = False """ Whether or not to copy data to storage that is directly attached to each individual worker node. Useful when your network storage is unusually slow, but otherwise discouraged. """ max_sequence_length: Optional[int] = None """ The sequence length of samples produced by the dataloader. When using the 'corpus' data format, the same preprocessed data will work with any max sequence length, so this may be set at runtime. When using the 'sample' format this must be set to `None`. """ data_subset: Optional[str] = None """ An optional specification to only consider a subset of the full dataset, useful for sequence length scheduling and multi-epoch testing. Expected to be a comma separated list of ranges, e.g. '0.0-0.5' or '0.1-0.3,0.7-1.0'. Specifying '0.0-0.5' creates a dataset from the first half of the data on disk and disregards the second half. """ mixture: Optional[List[dict]] = None """ An optional specification of multiple datasets to mix over to create one single weighted combination. Each element must be a dictionary containing keys `data_dir` and `weight`. `data_dir` serves the same purpose as mentioned above. `weight` defines the probability with which this dataset should be sampled from. Weights are normalized to sum to 1. Optionally, the dictionary may also contain a `data_subset` field which functions the same as the `data_subset` argument above. """ drop_last: bool = True """ Similar to the PyTorch drop_last setting except that samples that when set to `True`, samples that would have been dropped at the end of one epoch are yielded at the start of the next epoch so that there is no data loss. This is necessary for a data ordering that is independent of the distributed setup being used. """ num_samples: Optional[int] = None """ The number of samples to shuffle over (if shuffling is enabled). In multi-epoch training, it is common to set this to the total number of samples that you plan to train on so that epochs are not sequential but instead shuffled together for potentially improved convergence. """ sort_files: bool = True """ Whether or not the reader should sort the input files. This is included for backwards compatibility and should almost always be set to `True`. """ use_vsl: bool = False """ Flag to enable variable sequence length training. It requires the dataset to have two extra features: the `attention_span` of keys and the `position_ids` of tokens. Defaults to `False`. """ pad_last: bool = False """ Flag to enable padding of the last batch so that the last batch has the same batch size as the rest of the batches. """ @model_validator(mode="after") def check_mutual_exclusivity(self): if self.data_dir is not None: if self.mixture is not None: raise ValueError( "Only one of `data_dir` or `mixture` must be specified." ) elif self.mixture is None: raise ValueError( "One of `data_dir` or `mixture` must be specified." ) return self
[docs]class HDF5Dataset(torch.utils.data.Dataset): """ Dynamically read samples from disk for using mapping paradigms. It supports two different data formats on disk. The first is data stored in an H5 file in the shape `(num_tokens,)`, i.e. a series of documents tokenized and concatenated together. We call this format the 'corpus' format The second format is H5 data of shape `(num_sequences, ...)`, i.e. data has already been tokenized and split into sequences. We call this format the 'sample' format. The corpus format supports flexible choice of MSL backed by a single copy of the data on disk. Both formats support deterministic restart, and a data order that is independent of the configuration of the cluster you are running on. I.e. you can pause a run, increase or decrease the number of systems you are running on, and restart the run with no change in data order. When used in combination with shuffling, this implementation relies on random access reads to disk to dynamically split samples into sequences and shuffle. Users with unusually slow storage should look out for data loading bottlenecks and might consider using `use_worker_cache=True` if disk access is indeed a bottleneck. Args: config: The configuration used to configure the dataset """ def __init__(self, config: HDF5DatasetConfig): if isinstance(config, dict): config = HDF5DatasetConfig(**config) self.use_worker_cache = config.use_worker_cache self.max_sequence_length = config.max_sequence_length self.shuffle = config.shuffle self.shuffle_seed = config.shuffle_seed self.data_dir = config.data_dir self.mixture_params = config.mixture self.batch_size = config.batch_size self.drop_last = config.drop_last self.num_samples = config.num_samples self.sort_files = config.sort_files self.use_vsl = config.use_vsl self.pad_last = config.pad_last self.map_fn = None # Set of member variables that should be ignored when returning state_dict self._state_dict_ignore_keys = { "map_fn", "reader", "sampler", "_state_dict_ignore_keys", "_load_state_ignore_keys", } # Set of member variables that should be ignored when comparing previous # and current state_dict. These variables don't affect the samples returned # from the dataset which is why they are ignored. self._load_state_ignore_keys = {"use_worker_cache", "batch_size"} if self.drop_last and self.pad_last: logging.warning( "Both drop_last and pad_last were specified to be True. " "Note that pad_last only has any effect when drop_last is False." ) if self.data_dir and self.mixture_params: raise ValueError( "Only one of `data_dir` or `mixture` can be specified." ) if self.data_dir is not None: self.reader = self._set_up_reader(self.data_dir, config.data_subset) else: self.reader = Mixture( [ self._set_up_reader( x["data_dir"], x.get("data_subset", None) ) for x in self.mixture_params ], [x["weight"] for x in self.mixture_params], interleave=not self.shuffle, seed=self.shuffle_seed, ) self.sampler = cstorch.utils.data.DistributedSampler( self, shuffle=self.shuffle, seed=self.shuffle_seed, shard=True, batch_size=self.batch_size, drop_last=self.drop_last, num_samples=self.num_samples, pad_last=self.pad_last, ) if self.by_sample and self.shuffle: logging.warning( "You have chosen to use the sample data format with shuffling. " "If you are doing a single-epoch run, it is usually beneficial " "to shuffle at preprocessing time instead of runtime. On some " "storage setups, shuffling at runtime can cause performance " "degredation." ) def state_dict(self): return { k: v for k, v in self.__dict__.items() if k not in self._state_dict_ignore_keys } def load_state_dict(self, state_dict, strict: bool = True): if not strict: # Don't run any checks return mismatches = [] missing = [] unknown = set(state_dict.keys()) for k, v in self.state_dict().items(): unknown.discard(k) if k in self._load_state_ignore_keys: continue if k not in state_dict: missing.append(k) elif state_dict[k] != v: mismatches.append([k, v, state_dict[k]]) error_str = "" if unknown: error_str += ( f"The following keys are unknown in the state_dict: " f"{','.join(unknown)}.\n" ) if mismatches: error_str += ( ( "The following keys mismatch between the currently loaded dataset " "and the state_dict being loaded onto the dataset:\n " ) + "\n ".join( f"key={a}, current_value={b}, state_dict_value={c}" for a, b, c, in mismatches ) + "\n" ) if missing: error_str += ( f"The following keys are missing in the state_dict: " f"{','.join(missing)}.\n" ) if error_str: raise RuntimeError( f"state_dict is incompatible with the dataset settings. " f"If these incompatibilities are expected, load with " f"`strict=False` setting. \n{error_str}" )
[docs] def generate_sample(self): """ Generates an empty tensor with the same shape and dtype as a sample from its dataset. """ shape = self.reader.vdataset.shape[1:] np_dtype = self.reader.vdataset.dtype dtype = cstorch.from_numpy(numpy.empty(0).astype(np_dtype)).dtype return PaddingSample(shape, dtype)
@property def by_sample(self): return self.reader.by_sample def map(self, fn: callable): if self.map_fn is not None: raise ValueError( f"You may only apply one map function to a H5MapDataset" ) if not callable(fn): raise ValueError("Mapping function must be a callable.") self.map_fn = fn def _set_up_reader(self, data_dir, subset): if not isinstance(data_dir, list): data_dir = [data_dir] if self.use_worker_cache and cstorch.use_cs() and dist.is_streamer(): data_dir = [create_worker_cache(d) for d in data_dir] reader = H5Reader( data_dirs=data_dir, sequence_length=self.max_sequence_length, read_extra_token=True, data_subset=subset, sort=self.sort_files, use_vsl=self.use_vsl, ) return reader def __getitem__(self, i): if i == pad_index: if not self.pad_last: raise RuntimeError( "Unexpectedly encountered the pad index when pad_last was False" ) x = self.generate_sample() else: x = self.reader[i] if self.map_fn is not None: return self.map_fn(x) return x def __len__(self): return len(self.reader)
[docs]class MLMHDF5Dataset(HDF5Dataset): """Dataset class to handle text preprocessing in bert mlm datasets. Args: config: The config used to configure the dataset. """ def _set_up_reader(self, data_dir, subset): if not isinstance(data_dir, list): data_dir = [data_dir] if self.use_worker_cache and cstorch.use_cs() and dist.is_streamer(): data_dir = [create_worker_cache(d) for d in data_dir] reader = H5Reader( data_dirs=data_dir, extra_data_keys=["labels"], sequence_length=self.max_sequence_length, read_extra_token=True, data_subset=subset, sort=self.sort_files, use_vsl=self.use_vsl, ) return reader def generate_sample(self): data_sample = super().generate_sample() # generate an empty tensor with the same shape and dtype # as an processed image from its dataset shape = self.reader.vdataset_full["labels"].shape[1:] np_dtype = self.reader.vdataset_full["labels"].dtype dtype = cstorch.from_numpy(numpy.empty(0).astype(np_dtype)).dtype labels_sample = PaddingSample(shape, dtype) return data_sample, labels_sample def __getitem__(self, i): if i == pad_index: if not self.pad_last: raise RuntimeError( "Unexpectedly encountered the pad index when pad_last was False" ) x = self.generate_sample() else: x = self.reader[i] if self.map_fn is not None: data = self.map_fn(x) return data data, labels = x["data"], x["labels"] return data, labels
[docs]class MultiModalHDF5DatasetConfig(HDF5DatasetConfig): img_data_dir: str = ... """ The path to the directory containing the images. """ image_data_size: List[int] = ... """ The final C x H x W shape of the image. """ transforms: List[dict] = ... """ A specification of the torchvision transforms. """ def post_init(self, context): if model_config := context.get("model", {}).get("config"): if hasattr(model_config, "image_model"): # TODO: How to enforce that image_model has `num_channels` and `image_size` attributes? self.image_data_size = [ model_config.image_model.num_channels, *model_config.image_model.image_size, ]
[docs]class MultiModalHDF5Dataset(HDF5Dataset): """Dataset class to handle image preprocessing in multimodal datasets. This class is largely the same as the parent class `HDF5Dataset` except with added image loading and preprocessing. Args: config: The config used to configure the dataset. """ def __init__(self, config: MultiModalHDF5DatasetConfig): if isinstance(config, dict): # TODO(SW-137670): Remove this workaround after multimodel config classes # have been converted. class _MultiModalHDF5DatasetConfig(MultiModalHDF5DatasetConfig): model_config = dict(extra="ignore") config = _MultiModalHDF5DatasetConfig(**config) super().__init__(config) self.img_data_dir = config.img_data_dir self.image_data_size = config.image_data_size # (C, H, W) self.transforms = get_preprocess_transform( {"transforms": config.transforms} ) self._state_dict_ignore_keys.add("transforms") self._load_state_ignore_keys.add("img_data_dir") self._load_state_ignore_keys.add("image_data_size") def generate_sample(self): text_sample = super().generate_sample() # generate an empty tensor with the same shape and dtype # as an processed image from its dataset dtype = cstorch.amp.get_half_dtype() img_sample = PaddingSample(self.image_data_size, dtype) return text_sample, img_sample def preprocess_img(self, path): path = path[0].decode("utf-8") if path != "None": image_path = os.path.join(self.img_data_dir, path) image = Image.open(image_path).convert("RGB") else: image = Image.new( mode="RGB", size=(self.image_data_size[2], self.image_data_size[1]), ) return self.transforms(image) def _set_up_reader(self, data_dir, subset): if not isinstance(data_dir, list): data_dir = [data_dir] if self.use_worker_cache and cstorch.use_cs() and dist.is_streamer(): data_dir = [create_worker_cache(d) for d in data_dir] reader = H5Reader( data_dirs=data_dir, extra_data_keys=["img_path"], sequence_length=self.max_sequence_length, read_extra_token=True, data_subset=subset, sort=self.sort_files, use_vsl=self.use_vsl, ) return reader def __getitem__(self, i): if i == pad_index: if not self.pad_last: raise RuntimeError( "Unexpectedly encountered the pad index when pad_last was False" ) text_data, img_data = self.generate_sample() else: data = self.reader[i] text_data, img_path = data["data"], data["img_path"] img_data = self.preprocess_img(img_path) if self.map_fn is not None: data = self.map_fn(text_data) data["image_data"] = img_data return data return text_data, img_data
[docs]class MultimodalSimpleHDF5DatasetConfig(MultiModalHDF5DatasetConfig): max_num_img: int = 1 """ The maximum number of images. """ num_patches: Optional[int] = None """ The number of patches. """ def post_init(self, context): super().post_init(context) if self.num_patches is None: model_config = context.get("model", {}).get("config") if hasattr(model_config, "image_model"): if len(self.image_data_size) == 3: self.num_patches = ( self.image_data_size[-1] // model_config.image_model.patch_size[0] ) * ( self.image_data_size[-2] // model_config.image_model.patch_size[1] ) else: self.num_patches = self.image_data_size[0]
### H5 format # 1. Data: B x 7 x S -- original 6 + token_modality_idx # 2. Img_path: list of strings # 3. image_data_loc: B x 1 x I * num_patches
[docs]class MultimodalSimpleHDF5Dataset(MultiModalHDF5Dataset): """Dataset class to handle image preprocessing in multimodal datasets. This class is largely the same as the parent class `MultimodalHDF5Dataset` except with added support for multiple images and intermingling of text and images. Args: config: The config used to configure the dataset. """ def __init__(self, config: MultimodalSimpleHDF5DatasetConfig): if isinstance(config, dict): config = MultimodalSimpleHDF5DatasetConfig(**config) super().__init__(config) self.max_num_img = config.max_num_img self.num_patches = config.num_patches self.image_data_size = list(self.image_data_size) self.image_data_size.insert(0, self.max_num_img) def _set_up_reader(self, data_dir, subset): if not isinstance(data_dir, list): data_dir = [data_dir] if self.use_worker_cache and cstorch.use_cs() and dist.is_streamer(): data_dir = [create_worker_cache(d) for d in data_dir] reader = H5Reader( data_dirs=data_dir, extra_data_keys=["img_path", "img_data_loc"], sequence_length=self.max_sequence_length, read_extra_token=True, data_subset=subset, sort=self.sort_files, use_vsl=self.use_vsl, ) return reader def generate_sample(self): text_sample, img_sample = super().generate_sample() img_data_loc_sample = PaddingSample( [self.max_num_img, self.num_patches], dtype ) return text_sample, img_sample, img_data_loc_sample def preprocess_img(self, path_list): img_list = [] for path in path_list: path = path.decode("utf-8") if path != "None": image_path = os.path.join(self.img_data_dir, path) image = Image.open(image_path).convert("RGB") else: image = Image.new( mode="RGB", size=(self.image_data_size[2], self.image_data_size[1]), ) img_list.append(self.transforms(image).unsqueeze(0)) img = torch.cat(img_list, dim=0) return img def __getitem__(self, i): if i == pad_index: if not self.pad_last: raise RuntimeError( "Unexpectedly encountered the pad index when pad_last was False" ) text_data, img_data, img_data_loc = self.generate_sample() else: data = self.reader[i] text_data, img_path, img_data_loc = ( data["data"], data["img_path"], data["img_data_loc"], ) img_data = self.preprocess_img(img_path) if self.map_fn is not None: data = self.map_fn(text_data) data["image_data"] = img_data data["image_data_loc"] = img_data_loc return data return text_data, img_data, img_data_loc