Thank you for your feedback!
Source code for cerebras.modelzoo.common.utils.model.transformer_utils
# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple
import torch
import cerebras.pytorch as cstorch
def _extend_mask_to_shape_of_4(mask: torch.Tensor):
assert len(mask.shape) in [
2,
3,
4,
], "Masks with shape 2, 3, 4 are supported"
if len(mask.shape) == 2:
# [batch_size, target_seq_len]
mask = mask[:, None, None, :]
elif len(mask.shape) == 3:
# [batch_size, src_seq_len, target_seq_len]
mask = mask[:, None, :, :]
else:
# len(key_padding_mask.shape) == 4
# [batch_size, num_heads, src_seq_len, target_seq_len]
mask = mask
return mask
[docs]def replace_with_zero_and_neg_inf(
mask: torch.Tensor, neg_inf: bool = True
) -> torch.Tensor:
"""Replace the values in mask tensor with 0 and -inf.
Nonpositive values are replaced with 0. Positive values are replaced with -inf.
Args:
mask: Mask tensor with nonpositive values indicating tokens to attend to and
positive values for tokens to ignore.
neg_inf: Use negative infinity instead of one in the resulting mask.
defaults to True.
Returns:
The mask tensor with values replaced.
"""
mask_val = torch.tensor(float("-inf") if neg_inf else 1, dtype=mask.dtype)
return torch.where(mask > 0, mask_val, 0)
[docs]def make_key_padding_mask_broadcastable(
key_padding_mask: torch.Tensor,
dtype=None,
revert_mask: bool = True,
use_neg_inf: bool = True,
):
"""Makes broadcastable key_padding masks so that padding tokens are ignored.
Args:
key_padding_mask (torch.Tensor): Key padding mask with shape in [2,3,4], with entry values either 1 or 0.
dtype (torch.dtype): Dtype of the resulting mask.
revert_mask (bool): Whether to flip the 1's and 0's of the attention mask, default to True.
use_neg_inf (bool): Use negative infinity instead of one in the resulting mask, default to True.
Returns:
The key padding mask of shape [batch_size, num_heads, src_seq_len, target_seq_len],
with broadcast dimensions set to 1.
"""
if dtype is None:
dtype = torch.float16
key_padding_mask = key_padding_mask.to(dtype=dtype)
# Since `key_padding_mask` is passed as `1.0` for positions we want to
# attend and `0.0` for masked positions, this operation will "invert"
# the mask due to the "negative infinity" scaling at the end.
if revert_mask:
key_padding_mask = 1.0 - key_padding_mask
if use_neg_inf:
key_padding_mask = replace_with_zero_and_neg_inf(key_padding_mask)
extended_key_padding_mask = _extend_mask_to_shape_of_4(key_padding_mask)
return extended_key_padding_mask
[docs]def create_broadcasted_autoregressive_mask(
batch_size: int,
num_heads: int,
tgt_seq_length: int,
attention_span: Optional[torch.Tensor] = None,
attention_sliding_window_length: Optional[int] = None,
attention_sink_tokens: Optional[int] = None,
attention_vertical_column_spacing: Optional[int] = None,
attention_vertical_column_width: Optional[int] = None,
attention_chunk_size: Optional[int] = None,
device: Optional[torch.device] = None,
dtype: torch.dtype = torch.float16,
use_neg_inf: bool = True,
):
"""Create broadcasted causal attention mask optionally with VSL masking.
For VSL, `attention_span` is required and past tokens out of the current sequence
are additionally masked.
Args:
batch_size (int): Batch size.
num_heads (int): Number of heads.
tgt_seq_length (int): Target sequence length.
attention_span (torch.Tensor): Attention span of keys for VSL, has shape [batch_size, target_seq_len].
attention_sliding_window_length (int): If specified, the current token would only attend the current
token and attention_sliding_window_length previous tokens.
attention_sink_tokens (int): Number of attention sink tokens to be used for StreamingLLM-style inference.
attention_chunk_size (int): If specified, the attention mask will have a chunked pattern of `attention_chunk_size` length windows.
device (torch.device): The device of the input to the model, used for causal mask creation.
dtype (torch.dtype): Dtype of the resulting mask, default to torch.float16.
use_neg_inf (bool): Use negative infinity instead of one in the resulting mask, default to True.
Returns:
The attention mask of shape [batch_size, num_heads, tgt_seq_len, tgt_seq_len].
"""
if (
attention_span is not None
and attention_sliding_window_length is not None
):
raise ValueError(f"Sliding window used with VSL.")
if (
attention_chunk_size is not None
and attention_sliding_window_length is not None
):
raise ValueError(
f"Chunked attention mask incompatible with sliding window."
)
if (
attention_sink_tokens is not None
and attention_sliding_window_length is None
):
raise ValueError(
f"got {attention_sink_tokens=} but {attention_sliding_window_length=}"
)
if attention_span is not None:
return create_vsl_mask(
attention_span=attention_span,
num_heads=num_heads,
is_causal=True,
device=device,
dtype=dtype,
use_neg_inf=use_neg_inf,
)
mask_shape = (
batch_size,
num_heads,
tgt_seq_length,
tgt_seq_length,
)
seq_range = torch.arange(tgt_seq_length, device=device, dtype=torch.float32)
q_range = seq_range[:, None].broadcast_to(mask_shape)
k_range = seq_range[None, :].broadcast_to(mask_shape)
diff = q_range - k_range
# We want mask construction written as supported float ops.
#
# For example,
# causal_mask = (diff < 0) | (diff > attention_span)
# can be written as
# max(diff - attention_span, 0) - min(diff, 0)
# for integer tensors diff, attention_span.
# Use -diff directly for pure triangular mask.
attention_mask = -diff
if attention_chunk_size is not None:
attention_span = create_chunked_attention_span(
batch_size,
tgt_seq_length,
attention_chunk_size,
device=attention_mask.device,
)
zero = torch.tensor(0, dtype=torch.float32)
attention_mask = torch.maximum(
diff - attention_span[:, None, None, :], zero
)
attention_mask += torch.maximum(-diff, zero)
if attention_sliding_window_length is not None:
# Set upper triangular part to positive integers.
zero = torch.tensor(0, dtype=torch.float32)
attention_mask = torch.maximum(attention_mask, zero)
window_span = torch.tensor(
attention_sliding_window_length - 1,
device=device,
dtype=torch.float32,
).broadcast_to(mask_shape)
if attention_sink_tokens:
offset = tgt_seq_length - attention_sink_tokens
window_span = torch.where(
k_range + offset >= tgt_seq_length, window_span, tgt_seq_length
)
attention_mask += torch.maximum(diff - window_span, zero)
if (attention_vertical_column_spacing is None) ^ (
attention_vertical_column_width is None
):
raise ValueError("column spacing and width must both be specified")
elif attention_vertical_column_spacing is not None:
zero = torch.tensor(0, dtype=torch.float32)
attention_mask = torch.maximum(attention_mask, zero)
for i in range(
attention_vertical_column_spacing - 1,
tgt_seq_length,
attention_vertical_column_spacing,
):
window_span = torch.tensor(
i,
device=device,
dtype=torch.float32,
).broadcast_to(mask_shape)
# first construct the column span
right_span = torch.where(
k_range <= window_span, tgt_seq_length, window_span
)
left_span = torch.where(
k_range + attention_vertical_column_width <= window_span,
tgt_seq_length,
window_span,
)
col_part_one = torch.where(
0.0 < right_span - left_span, float(tgt_seq_length), 0.0
)
col_part_two = torch.where(
0.0 < col_part_one,
float(attention_vertical_column_width),
0.0,
)
col_span = col_part_one + col_part_two
# then select the lower triangular part of the columns
final_span = torch.maximum(diff - col_span, zero)
upper_mask = torch.where(diff < 0.0, attention_mask, 0.0)
attention_mask = (
-torch.maximum(-final_span, -attention_mask) + upper_mask
)
attention_mask = attention_mask.to(dtype)
attention_mask = replace_with_zero_and_neg_inf(attention_mask, use_neg_inf)
return attention_mask
[docs]def create_vsl_mask(
attention_span: torch.Tensor,
position_ids: Optional[torch.Tensor] = None,
num_heads: int = 1,
is_causal: bool = True,
device: Optional[torch.device] = None,
dtype: torch.dtype = torch.float16,
use_neg_inf: bool = True,
):
"""Creates a VSL attention mask.
E.g. for a VSL sequence that consists of a sequence of length 3 and a sequence of length 2, then the causal mask is:
```
[
[0, -inf, -inf, -inf, -inf],
[0, 0, -inf, -inf, -inf],
[0, 0, 0, -inf, -inf],
[-inf, -inf, -inf, 0, -inf,],
[-inf, -inf, -inf, 0, 0],
]
```
whereas the non-causal mask is:
```
[
[0, 0, 0, -inf, -inf],
[0, 0, 0, -inf, -inf],
[0, 0, 0, -inf, -inf],
[-inf, -inf, -inf, 0, 0],
[-inf, -inf, -inf, 0, 0],
]
```
Args:
attention_span (torch.Tensor): Attention span of keys for VSL, has shape [batch_size, seq_len].
position_ids (torch.Tensor): Optional position id of keys for VSL, has shape [batch_size, seq_len].
num_heads (int): Number of heads.
is_causal (bool): The mask is causal or not (bidirectional), default to True.
device (torch.device): The device of the input to the model, used for causal mask creation.
dtype (torch.dtype): Dtype of the resulting mask, default to torch.float16.
use_neg_inf (bool): Use negative infinity instead of one in the resulting mask, default to True.
Returns:
The attention mask of shape [batch_size, num_heads, seq_len, seq_len].
"""
if not is_causal and position_ids is None:
raise ValueError(f"Creating bidirectional mask requires position_ids.")
batch_size, seq_len = attention_span.shape
mask_shape = (batch_size, num_heads, seq_len, seq_len)
seq_range = torch.arange(seq_len, device=device, dtype=torch.float32)
q_range = seq_range[:, None].broadcast_to(mask_shape)
k_range = seq_range[None, :].broadcast_to(mask_shape)
diff = q_range - k_range
# We want mask construction written as supported float ops.
#
# For example,
# causal_mask = (diff < 0) | (diff > attention_span)
# can be written as
# max(diff - attention_span, 0) - min(diff, 0)
# for integer tensors diff, attention_span.
# Set out of sequence VSL regions to positive integers.
zero = torch.tensor(0, dtype=torch.float32)
attention_mask = torch.maximum(
diff - attention_span[:, None, None, :], zero
)
if is_causal:
# Set upper triangular part to positive integers.
attention_mask += torch.maximum(-diff, zero)
else:
# Set out of sequence VSL regions in the upper triangular part to positive integers.
attention_mask += torch.maximum(
-diff - position_ids[:, None, None, :], zero
)
attention_mask = attention_mask.to(dtype)
attention_mask = replace_with_zero_and_neg_inf(attention_mask, use_neg_inf)
return attention_mask
[docs]def create_2D_autoregressive_mask(
src_sequence_length: int,
target_sequence_length: int,
dtype=None,
device=None,
):
"""Creates a reverted autoregressive (upper triangular) mask where the 0s refers to the tokens
to attend to and 1s refer to the tokens that are skipped.
Args:
batch_size (int): Batch size.
src_sequence_length (int): Sequence length of the source (num query vectors).
target_sequence_length (int): Sequence length of the target (num key vectors).
dtype (torch.dtype): Dtype of the resulting mask.
device: (torch.device): The device of the input to the model, used for causal mask creation.
Returns:
The causal mask of shape [src_seq_len, target_seq_len].
"""
if dtype is None:
dtype = torch.float16
causal_mask = torch.triu(
torch.ones(
(src_sequence_length, target_sequence_length),
device=device,
dtype=dtype,
),
diagonal=1,
)
return causal_mask
[docs]def create_2D_full_mask(
src_sequence_length: int,
target_sequence_length: int,
dtype=None,
device=None,
):
"""Create autoregressive (triangular) mask.
Args:
batch_size (int): Batch size.
src_sequence_length (int): Sequence length of the source (num query vectors).
target_sequence_length (int): Sequence length of the target (num key vectors).
dtype (torch.dtype): Dtype of the resulting mask.
device: (torch.device): The device of the input to the model, used for causal mask creation.
Returns:
The causal mask of shape [src_seq_len, target_seq_len].
"""
if dtype is None:
dtype = torch.float16
full_mask = torch.ones(
(src_sequence_length, target_sequence_length),
device=device,
dtype=dtype,
)
return full_mask
[docs]def make_sparse_mask_broadcastable(
sparse_mask: torch.Tensor,
key_padding_mask: torch.Tensor,
dtype=None,
device=None,
revert_mask: bool = True,
use_neg_inf: bool = True,
):
"""Create broadcastable sparse mask so that masked positions are ignored.
Args:
sparse_mask (torch.Tensor): Sparse mask with shape [src_seq_len, target_seq_len].
key_padding_mask (torch.Tensor): Key padding mask with shape in [2,3,4].
dtype (torch.dtype): Dtype of the resulting mask.
device: (torch.device): The device to move the sparse mask to.
revert_mask (bool): Whether to flip the 1's and 0's of the attention mask, default to True.
use_neg_inf (bool): Use negative infinity instead of one in the resulting mask, default to True.
Returns:
The attention mask of shape [batch_size, num_heads, src_seq_len, target_seq_len],
with broadcast dimensions set to 1.
"""
if dtype is None:
dtype = torch.float16
if revert_mask:
sparse_mask = 1.0 - sparse_mask
# When running on CS, move constant from CPU to device wrapped with
# XLA literal
if cstorch.use_cs():
fixed_sparsity = cstorch.make_constant(sparse_mask.to(dtype=dtype))
else:
# When running on GPU, move constant from CPU to GPU
fixed_sparsity = sparse_mask.to(device=device)
extended_key_padding_mask = make_key_padding_mask_broadcastable(
key_padding_mask,
dtype=dtype,
revert_mask=False,
use_neg_inf=False,
)
sparse_attention_mask, _ = torch.broadcast_tensors(
fixed_sparsity,
extended_key_padding_mask,
)
if use_neg_inf:
extended_key_padding_mask = replace_with_zero_and_neg_inf(
extended_key_padding_mask
)
return sparse_attention_mask
[docs]def get_extended_attention_mask(
attention_mask: torch.Tensor,
input_shape: Optional[Tuple[int]] = None,
causal: bool = False,
device: Optional[torch.device] = None,
dtype=None,
) -> torch.Tensor:
"""
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
attention_mask (:obj:`torch.Tensor`):
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
input_shape (:obj:`Tuple[int]`):
The shape of the input to the model (required for causal masks).
causal: (`bool`): If enabled the returned mask will be causal.
device: (:obj:`torch.device`):
The device of the input to the model.
Returns:
:obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
"""
if dtype is None:
dtype = torch.float16
attention_mask = attention_mask.to(dtype=dtype)
# Since `attention_mask` is passed as `1.0` for positions we want to
# attend and `0.0` for masked positions, this operation will "invert"
# the mask due to the "negative infinity" scaling at the end.
attention_mask = 1.0 - attention_mask
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
# Provided a padding mask of dimensions [batch_size, seq_length]
# - if the model is an encoder, make the mask broadcastable to
# [batch_size, num_heads, seq_length, seq_length]
extended_attention_mask = attention_mask[:, None, None, :]
# - if the model is a decoder, apply a causal mask instead of the
# padding mask
if causal:
batch_size, seq_length = input_shape
# build seq_length x seq_length lower triangular boolean
# mask(i, j) = i > j
seq_ids = torch.arange(seq_length, device=device)
causal_mask = seq_ids[None, :] > seq_ids[:, None]
causal_mask = causal_mask.to(attention_mask.dtype)
# in case past_key_values are used we need to add a prefix
# zeros mask to the causal mask
if attention_mask.shape[1] > seq_length:
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
causal_mask = torch.cat(
[
torch.zeros(
(seq_length, prefix_seq_len),
device=device,
dtype=causal_mask.dtype,
),
causal_mask,
],
axis=-1,
)
extended_attention_mask, _ = torch.broadcast_tensors(
causal_mask, extended_attention_mask
)
else:
raise ValueError(
f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
)
# Replace all the `1.0` masked-off values with -inf float value, since we
# are adding it to the raw scores before the softmax; this is effectively
# the same as removing these entirely.
return replace_with_zero_and_neg_inf(extended_attention_mask)
[docs]def create_chunked_attention_span(
batch_size: int,
target_seq_len: int,
chunk_size: int,
device: Optional[torch.device] = None,
) -> torch.Tensor:
"""Create an attention span tensor to create a
chunked attention mask pattern, similar to VSL masking.
For a batch size of 1, sequence length of 10 and chunk size of 3, the attention span tensor is:
```
[
[2, 1, 0, 2, 1, 0, 2, 1, 0, 2],
]
```
Args:
batch_size (int): Input batch size.
target_seq_len (int): Input sequence length.
chunk_size (int): Size of local attention chunk window.
device (Optional[torch.device]): The device of the input to the model.
Returns:
Attention span tensor of shape [batch_size, target_seq_len].
"""
seq_range = torch.arange(
target_seq_len, device=device, dtype=torch.float32
).broadcast_to((batch_size, target_seq_len))
zero = torch.tensor(0, dtype=torch.float32)
one = torch.tensor(1, dtype=torch.float32)
attention_span = torch.zeros_like(seq_range)
for i in range(chunk_size, target_seq_len + chunk_size, chunk_size):
shifted_range = torch.tensor(i, dtype=torch.float32) - seq_range
right_bounded = torch.where(shifted_range > 0, shifted_range, zero)
attention_span += torch.where(
right_bounded - chunk_size <= 0, right_bounded, zero
)
return attention_span - one
[docs]def create_sliding_window_mask_with_complement(
batch_size: int,
num_heads: int,
tgt_seq_length: int,
sliding_window_length: int,
device: Optional[torch.device] = None,
dtype: torch.dtype = torch.float16,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Returns two boolean masks, one is a sliding window causal mask,
the second is a complement so that both form a lower-triangular causal mask.
That is, the sliding window mask would look like:
```
[
[True, False, False, False, False],
[True, True, False, False, False],
[False, True, True, False, False],
[False, False, True, True, False],
[False, False, False, True, True],
]
```
whereas the complement mask is:
```
[
[False, False, False, False, False],
[False, False, False, False, False],
[True, False, False, False, False],
[True, True, False, False, False],
[True, True, True, False, False],
]
```
Args:
batch_size (int): Batch size.
num_heads (int): Number of heads.
tgt_seq_length (int): Target sequence length.
sliding_window_length (int): Mask sliding window length.
device (torch.device): The device of logit tensors to be masked.
Returns:
Tuple of two attention masks of shape [batch_size, num_heads, tgt_seq_length, tgt_seq_length].
"""
mask_shape = (
batch_size,
num_heads,
tgt_seq_length,
tgt_seq_length,
)
seq_range = torch.arange(tgt_seq_length, device=device, dtype=torch.float32)
q_range = seq_range[:, None].broadcast_to(mask_shape)
k_range = seq_range[None, :].broadcast_to(mask_shape)
diff = q_range - k_range
attention_mask = -diff
if sliding_window_length is not None:
# Set upper triangular part to positive integers.
zero = torch.tensor(0, dtype=torch.float32)
attention_mask = torch.maximum(attention_mask, zero)
window_span = torch.tensor(
sliding_window_length - 1, device=device, dtype=torch.float32
).broadcast_to(mask_shape)
attention_mask += torch.maximum(diff - window_span, zero)
swa_mask = attention_mask == 0
swa_complement_mask = (-diff + float(tgt_seq_length) * swa_mask) <= 0
return swa_mask, swa_complement_mask
[docs]def smooth_loss(prediction_scores, loss, label_smoothing, classes):
"""
Add label smoothing to loss function,
this is a workaround method of label smoothing in our system.
"""
logits = prediction_scores.view(-1, classes)
logprobs = torch.nn.functional.log_softmax(logits, dim=-1)
smooth_loss = -1.0 * logprobs.mean(dim=-1)
loss = (1.0 - label_smoothing) * loss + label_smoothing * smooth_loss
return loss
[docs]def get_embedding_dtype(mixed_precision=True, dtype=None):
if mixed_precision and torch.cuda.is_available():
if dtype in ["bfloat16", "cbfloat16"]:
return torch.bfloat16
if dtype == "float16":
return torch.float16
return None
Was this information helpful?
Thank you for your feedback!
- NO
- YES
Cancel
Submit