modelzoo.vision.pytorch.dit.input.DiffusionLatentImageNet1KProcessor.DiffusionLatentImageNet1KProcessor#
- class modelzoo.vision.pytorch.dit.input.DiffusionLatentImageNet1KProcessor.DiffusionLatentImageNet1KProcessor[source]#
 Bases:
modelzoo.vision.pytorch.dit.input.DiffusionBaseProcessor.DiffusionBaseProcessorMethods
check_split_validDataloader returns a dict with keys:
create_datasetcustom_collate_fnprocess_transform- create_dataloader(dataset, is_training=False)#
 - Dataloader returns a dict with keys:
 “input”: Tensor of shape (batch_size, latent_channels, latent_height, latent_width) “label”: Tensor of shape (batch_size, ) with dropout applied with label_dropout_rate “diffusion_noise”: Tensor of shape (batch_size, latent_channels, latent_height, latent_width)
represents diffusion noise to be applied
- “timestep”: Tensor of shape (batch_size, ) that
 indicates the timesteps for each diffusion sample