# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
[docs]class ResnetBlock2D(nn.Module):
    r"""
    A Resnet block.
    Parameters:
        in_channels (`int`): The number of channels in the input.
        out_channels (`int`, *optional*, default to be `None`):
            The number of output channels for the first conv2d layer. If None, same as `in_channels`.
        dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
        temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
        groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
        groups_out (`int`, *optional*, default to None):
            The number of groups to use for the second normalization layer. if set to None, same as `groups`.
        eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
        non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use.
        time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config.
            By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or
            "ada_group" for a stronger conditioning with scale and shift.
        kernal (`torch.FloatTensor`, optional, default to None): FIR filter, see
            [`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`].
        output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output.
        use_in_shortcut (`bool`, *optional*, default to `True`):
            If `True`, add a 1x1 nn.conv2d layer for skip-connection.
        up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer.
        down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer.
        conv_shortcut_bias (`bool`, *optional*, default to `True`):  If `True`, adds a learnable bias to the
            `conv_shortcut` output.
        conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output.
            If None, same as `out_channels`.
    """
[docs]    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout=0.0,
        temb_channels=512,
        groups=32,
        groups_out=None,
        pre_norm=True,
        eps=1e-6,
        non_linearity="swish",
        time_embedding_norm="default",  # default, scale_shift, ada_group
        kernel=None,
        output_scale_factor=1.0,
        use_in_shortcut=None,
        up=False,
        down=False,
        conv_shortcut_bias: bool = True,
        conv_2d_out_channels: Optional[int] = None,
    ):
        super().__init__()
        self.pre_norm = pre_norm
        self.pre_norm = True
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
        self.up = up
        self.down = down
        self.output_scale_factor = output_scale_factor
        self.time_embedding_norm = time_embedding_norm
        if groups_out is None:
            groups_out = groups
        # if self.time_embedding_norm == "ada_group":
        #     self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps)
        # else:
        #     self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
        self.norm1 = torch.nn.GroupNorm(
            num_groups=groups, num_channels=in_channels, eps=eps, affine=True
        )
        self.conv1 = torch.nn.Conv2d(
            in_channels, out_channels, kernel_size=3, stride=1, padding=1
        )
        if temb_channels is not None:
            if self.time_embedding_norm == "default":
                self.time_emb_proj = torch.nn.Linear(
                    temb_channels, out_channels
                )
            elif self.time_embedding_norm == "scale_shift":
                self.time_emb_proj = torch.nn.Linear(
                    temb_channels, 2 * out_channels
                )
            elif self.time_embedding_norm == "ada_group":
                self.time_emb_proj = None
            else:
                raise ValueError(
                    f"unknown time_embedding_norm : {self.time_embedding_norm} "
                )
        else:
            self.time_emb_proj = None
        self.norm2 = torch.nn.GroupNorm(
            num_groups=groups_out,
            num_channels=out_channels,
            eps=eps,
            affine=True,
        )
        self.dropout = torch.nn.Dropout(dropout)
        conv_2d_out_channels = conv_2d_out_channels or out_channels
        self.conv2 = torch.nn.Conv2d(
            out_channels,
            conv_2d_out_channels,
            kernel_size=3,
            stride=1,
            padding=1,
        )
        if non_linearity == "swish":
            self.nonlinearity = lambda x: F.silu(x)
        elif non_linearity == "mish":
            self.nonlinearity = nn.Mish()
        elif non_linearity == "silu":
            self.nonlinearity = nn.SiLU()
        elif non_linearity == "gelu":
            self.nonlinearity = nn.GELU()
        self.upsample = self.downsample = None
        self.use_in_shortcut = (
            self.in_channels != conv_2d_out_channels
            if use_in_shortcut is None
            else use_in_shortcut
        )
        self.conv_shortcut = None
        if self.use_in_shortcut:
            self.conv_shortcut = torch.nn.Conv2d(
                in_channels,
                conv_2d_out_channels,
                kernel_size=1,
                stride=1,
                padding=0,
                bias=conv_shortcut_bias,
            ) 
    def forward(self, input_tensor, temb):
        hidden_states = input_tensor
        if self.time_embedding_norm == "ada_group":
            hidden_states = self.norm1(hidden_states, temb)
        else:
            hidden_states = self.norm1(hidden_states)
        hidden_states = self.nonlinearity(hidden_states)
        if self.upsample is not None:
            # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
            if hidden_states.shape[0] >= 64:
                input_tensor = input_tensor.contiguous()
                hidden_states = hidden_states.contiguous()
            input_tensor = self.upsample(input_tensor)
            hidden_states = self.upsample(hidden_states)
        elif self.downsample is not None:
            input_tensor = self.downsample(input_tensor)
            hidden_states = self.downsample(hidden_states)
        hidden_states = self.conv1(hidden_states)
        if self.time_emb_proj is not None:
            temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
        if temb is not None and self.time_embedding_norm == "default":
            hidden_states = hidden_states + temb
        if self.time_embedding_norm == "ada_group":
            hidden_states = self.norm2(hidden_states, temb)
        else:
            hidden_states = self.norm2(hidden_states)
        if temb is not None and self.time_embedding_norm == "scale_shift":
            scale, shift = torch.chunk(temb, 2, dim=1)
            hidden_states = hidden_states * (1 + scale) + shift
        hidden_states = self.nonlinearity(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states)
        if self.conv_shortcut is not None:
            input_tensor = self.conv_shortcut(input_tensor)
        output_tensor = (
            input_tensor + hidden_states
        ) / self.output_scale_factor
        return output_tensor 
[docs]class Downsample2D(nn.Module):
    """
    A downsampling layer with an optional convolution.
    Parameters:
        channels: channels in the inputs and outputs.
        use_conv: a bool determining if a convolution is applied.
        out_channels:
        padding:
    """
[docs]    def __init__(
        self,
        channels,
        use_conv=False,
        out_channels=None,
        padding=1,
        name="conv",
    ):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.padding = padding
        stride = 2
        self.name = name
        if use_conv:
            conv = nn.Conv2d(
                self.channels,
                self.out_channels,
                3,
                stride=stride,
                padding=padding,
            )
        else:
            assert self.channels == self.out_channels
            conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
        if name == "conv":
            self.Conv2d_0 = conv
            self.conv = conv
        elif name == "Conv2d_0":
            self.conv = conv
        else:
            self.conv = conv 
    def forward(self, hidden_states):
        assert hidden_states.shape[1] == self.channels
        if self.use_conv and self.padding == 0:
            pad = (0, 1, 0, 1)
            hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
        assert hidden_states.shape[1] == self.channels
        hidden_states = self.conv(hidden_states)
        return hidden_states 
[docs]class Upsample2D(nn.Module):
    """
    An upsampling layer with an optional convolution.
    Parameters:
        channels: channels in the inputs and outputs.
        use_conv: a bool determining if a convolution is applied.
        use_conv_transpose:
        out_channels:
    """
[docs]    def __init__(
        self,
        channels,
        use_conv=False,
        use_conv_transpose=False,
        out_channels=None,
        name="conv",
    ):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_conv_transpose = use_conv_transpose
        self.name = name
        conv = None
        if use_conv_transpose:
            conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
        elif use_conv:
            conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
        if name == "conv":
            self.conv = conv
        else:
            self.Conv2d_0 = conv 
    def forward(self, hidden_states, output_size=None):
        assert hidden_states.shape[1] == self.channels
        if self.use_conv_transpose:
            return self.conv(hidden_states)
        # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
        # Remove this cast once the issue is fixed in PyTorch
        # https://github.com/pytorch/pytorch/issues/86679
        dtype = hidden_states.dtype
        if dtype == torch.bfloat16:
            hidden_states = hidden_states.to(torch.float32)
        # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
        if hidden_states.shape[0] >= 64:
            hidden_states = hidden_states.contiguous()
        # if `output_size` is passed we force the interpolation output
        # size and do not make use of `scale_factor=2`
        if output_size is None:
            hidden_states = F.interpolate(
                hidden_states, scale_factor=2.0, mode="nearest"
            )
        else:
            hidden_states = F.interpolate(
                hidden_states, size=output_size, mode="nearest"
            )
        # If the input is bfloat16, we cast back to bfloat16
        if dtype == torch.bfloat16:
            hidden_states = hidden_states.to(dtype)
        if self.use_conv:
            if self.name == "conv":
                hidden_states = self.conv(hidden_states)
            else:
                hidden_states = self.Conv2d_0(hidden_states)
        return hidden_states