Source code for vision.pytorch.layers.utils

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import Optional

import torch.nn as nn


[docs]def adjust_channels( channels: int, width_multiplier: float, divisor: Optional[int] = 8, min_value: Optional[int] = None, round_limit: Optional[int] = 0.9, ) -> int: return _make_divisible( channels * width_multiplier, divisor, min_value, round_limit )
[docs]def adjust_depth(num_layers: int, depth_multiplier: float): return int(math.ceil(num_layers * depth_multiplier))
def _make_divisible( v: float, divisor: int, min_value: Optional[int] = None, round_limit: Optional[int] = 0.9, ) -> int: """ This function is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by 8 It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < round_limit * v: new_v += divisor return new_v
[docs]class ModuleWrapperClass(nn.Module):
[docs] def __init__(self, fcn, name=None, kwargs=None): self.fcn = fcn self.name = name self.kwargs = kwargs super(ModuleWrapperClass, self).__init__()
[docs] def extra_repr(self) -> str: repr_str = 'fcn={}'.format( self.name if self.name is not None else self.fcn.__name__ ) if self.kwargs is not None: for k, val in self.kwargs.items(): repr_str += f", {k}={val}" return repr_str
[docs] def forward(self, input): return self.fcn(input)