Source code for vision.pytorch.input.classification.preprocessing
# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import torch
from torchvision.transforms import transforms
from modelzoo.vision.pytorch.input.transforms import create_transform
[docs]def get_preprocess_transform(image_size, params, use_training_transforms=True):
if params["noaugment"]:
transform_specs = [
{"name": "resize", "size": image_size},
{"name": "to_tensor"},
]
logging.warning(
"User specified `noaugment=True`. The input data will only be "
"resized to `image_size` and converted to tensor."
)
else:
transform_specs = params["transforms"]
transform_list = []
for spec in transform_specs:
transform = create_transform(spec)
transform_list.append(transform)
if params["mixed_precision"]:
mp_type = torch.bfloat16 if params["use_bfloat16"] else torch.float16
print(mp_type)
else:
mp_type = torch.float32
transform_list.append(
create_transform({"name": "to_dtype", "mp_type": mp_type})
)
transform = transforms.Compose(transform_list)
logging.info(
f"The following sequence is used to transform data:\n{transform}"
)
return transform