Source code for experimental.optim.Rprop

"""
Cerebras implementation of Rprop optimizer.
Adapted from the `torch.optim.Rprop` implementation.
"""
from typing import Iterable, Tuple

import torch

import cerebras_pytorch.experimental as cstorch

from .optimizer import Optimizer


[docs]class Rprop(Optimizer): r"""Rprop optimizer implemented to conform to execution within the constraints of the Cerebras WSE, including pre-initializing optimizer state Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) etas (Tuple[float, float], optional): step size multipliers step_size (Tuple[float, float], optional): Tuple of min, max step size values. Step size is clamped to be between these values. """
[docs] def __init__( self, params: Iterable[torch.nn.Parameter], lr: float = 1e-3, etas: Tuple[float, float] = (0.5, 1.2), step_sizes: Tuple[float, float] = (1e-6, 50.0), ): if lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) defaults = dict(lr=lr, etas=etas, step_sizes=step_sizes,) super().__init__(params, defaults)
[docs] def state_names_to_sparsify(self): return ["prev", "step_size"]
[docs] def preinitialize(self): """ Allocates tensors for the optimizer state to allow direct compilation of the model before the first step. """ for group in self.param_groups: for p in group['params']: state = self.state[p] state["prev"] = cstorch.zeros_like(p) state["step_size"] = cstorch.full_like(p, group['lr'])
@torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: step_size_min, step_size_max = [ ss if isinstance(ss, torch.Tensor) else torch.tensor(ss) for ss in group['step_sizes'] ] etaminus, etaplus = [ eta if isinstance(eta, torch.Tensor) else torch.tensor(eta) for eta in group['etas'] ] for p in group["params"]: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise RuntimeError( "Rprop does not support sparse gradients." ) state = self.state[p] prev = state["prev"] prev_step_size = state["step_size"] zero = torch.tensor(0.0).to(p.device) one = torch.tensor(1.0).to(p.device) neg_one = torch.tensor(-1.0).to(p.device) # check gradient for sign change - set step multiplier to etaplus, etaminus, or 1 step_multiplier = grad.mul(prev) step_multiplier = torch.where( torch.gt(step_multiplier, zero), etaplus.to(p.device), step_multiplier, ) step_multiplier = torch.where( torch.lt(step_multiplier, zero), etaminus.to(p.device), step_multiplier, ) step_multiplier = torch.where( torch.eq(step_multiplier, zero), one, step_multiplier, ) # calculate new step size and clamp between step_size_min and step_size_max step_size = prev_step_size.mul_(step_multiplier).to(p.device) step_size = torch.clamp( step_size, min=step_size_min, max=step_size_max, ) # Zero out the gradient wherever there was a sign change mask = torch.where( torch.eq(step_multiplier, etaminus.to(p.device)), zero, one, ) grad.mul_(mask.to(p.device)) # Get the sign of the gradient sign_grad = torch.zeros_like(grad) sign_grad = torch.where(torch.gt(grad, zero), one, sign_grad) sign_grad = torch.where( torch.lt(grad, zero), neg_one, sign_grad ) update = torch.mul(sign_grad, step_size).to(p.device) # update parameters p.sub_(update) prev.copy_(grad) prev_step_size.copy_(step_size) return loss