# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Script to format PubMed Fulltext commercial, PubMed Baseline and Update file Abstracts
Reference: https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/LanguageModeling/BERT
"""
import csv
import glob
import os
import pubmed_parser as pmp
[docs]class TextFormatting:
[docs] def __init__(
self,
pubmed_path,
output_filename,
filesize_limit=5 * (10 ** 9),
recursive=False,
):
"""
:param str pubmed_path: Path to folder containing PubMed files
:param str output_folder : Path to where the txt file to be written
:param Optional[int] filesize_limit: Max size of each text file
:param Optional[bool] recursive: Flag if true,
searches for nxml/xml files recursively within subfolders
"""
self.pubmed_path = pubmed_path
print(f"self.pubmed_path:{pubmed_path}")
self.recursive = recursive
self.filesize = int(filesize_limit)
self.output_folder = os.path.dirname(output_filename)
if not os.path.exists(self.output_folder):
os.makedirs(self.output_folder)
self.filename = output_filename
[docs] def merge_abstracts(self):
file_num = 0
num_articles = 0
total_articles = 0
output_filename = (
self.filename.split('.')[0] + f"_{int(file_num)}" + ".txt"
)
csv_file = output_filename.split('.')[0] + "_stats.csv"
csv_fh = open(csv_file, 'w')
fieldnames = ['fname', 'num_articles']
csv_writer = csv.DictWriter(csv_fh, fieldnames=fieldnames)
csv_writer.writeheader()
ofile = open(output_filename, mode='w', newline='\n')
it = glob.iglob(self.pubmed_path + '/*.xml', recursive=self.recursive)
for filename in it:
print(f"Processing: {filename}")
dicts_out = pmp.parse_medline_xml(filename)
for dict_out in dicts_out:
if not dict_out['abstract']:
# Some articles have no abstract : https://pubmed.ncbi.nlm.nih.gov/13787/
continue
try:
for line in dict_out['abstract'].splitlines():
if len(line) < 30:
# Refer to https://pubmed.ncbi.nlm.nih.gov/4969/
# Multiple paragraphs in abstract with subtitles such as "Result".
# Removing these subtitles ONLY
continue
ofile.write(line.strip() + " ")
ofile.write("\n\n")
num_articles += 1
except:
ofile.write("\n\n")
continue
if int(ofile.tell()) > self.filesize:
ofile.close()
# Write to csv stats:
csv_writer.writerow(
{
'fname': output_filename,
'num_articles': num_articles,
}
)
total_articles += num_articles
# Open another file
file_num += 1
output_filename = (
self.filename.split('.')[0]
+ f"_{int(file_num)}"
+ ".txt"
)
print(f" -- Creating new file: {output_filename}")
ofile = open(output_filename, mode='w', newline='\n')
# Reset abstracts count per file
num_articles = 0
total_articles += num_articles
csv_writer.writerow(
{'fname': output_filename, 'num_articles': num_articles}
)
csv_writer.writerow(
{'fname': 'Total abstracts', 'num_articles': total_articles}
)
csv_fh.close()
ofile.close()
print(f"**** Total number of abstracts = {total_articles}")
[docs] def merge_fulltext(self):
# This puts one article per line
file_num = 0
num_articles = 0
total_articles = 0
output_filename = (
self.filename.split('.')[0] + f"_{int(file_num)}" + ".txt"
)
csv_file = output_filename.split('.')[0] + "_stats.csv"
csv_fh = open(csv_file, 'w')
fieldnames = ['fname', 'num_articles']
csv_writer = csv.DictWriter(csv_fh, fieldnames=fieldnames)
csv_writer.writeheader()
top_level_folders = [
os.path.join(self.pubmed_path, x)
for x in os.listdir(self.pubmed_path)
]
top_level_folders = [x for x in top_level_folders if os.path.isdir(x)]
print(top_level_folders)
not_written = os.path.join(self.output_folder, "exceptions.txt")
with open(not_written, mode='w', newline='\n') as ex_fh:
ofile = open(output_filename, mode='w', newline='\n')
for folder in top_level_folders:
it = glob.iglob(folder + '/**/*.nxml', recursive=self.recursive)
for filename in it:
print(f"Processing: {filename}")
header_dict = pmp.parse_pubmed_xml(filename)
body_list = pmp.parse_pubmed_paragraph(
filename, all_paragraph=True
)
if not header_dict and not body_list:
ex_fh.write(filename)
ex_fh.write('\n')
continue
try:
if header_dict:
ofile.write(
header_dict['full_title'].strip() + ". "
)
if header_dict.get('abstract', None):
for line in header_dict['abstract'].splitlines():
if len(line) < 30:
continue
ofile.write(line.strip() + " ")
if body_list:
for dict_entry in body_list:
section = dict_entry['section']
if len(section) > 30:
ofile.write(section.strip() + ". ")
for line in dict_entry['text'].splitlines():
ofile.write(line.strip() + " ")
ofile.write("\n\n")
num_articles += 1
except:
ofile.write("\n\n")
continue
if int(ofile.tell()) > self.filesize:
ofile.close()
# Write to csv stats:
csv_writer.writerow(
{
'fname': output_filename,
'num_articles': num_articles,
}
)
total_articles += num_articles
# Open another file
file_num += 1
output_filename = (
self.filename.split('.')[0]
+ f"_{int(file_num)}"
+ ".txt"
)
print(f" -- Creating new file: {output_filename}")
ofile = open(output_filename, mode='w', newline='\n')
# Reset articles count
num_articles = 0
total_articles += num_articles
csv_writer.writerow(
{'fname': output_filename, 'num_articles': num_articles,}
)
csv_writer.writerow(
{
'fname': 'Total num articles',
'num_articles': total_articles,
}
)
csv_fh.close()
ofile.close()
print(
f"**** Total number of full text articles = {total_articles}"
)
[docs] def merge(self, dataset_name):
if (
dataset_name == "pubmed_baseline"
or dataset_name == "pubmed_daily_update"
):
self.merge_abstracts()
elif (
dataset_name == "pubmed_fulltext"
or dataset_name == "pubmed_open_access"
):
self.merge_fulltext()
else:
raise ValueError(f"Incorrect dataset_name: {dataset_name} passed")