Source code for data_processing.scripts.hdf5_preprocessing.create_hdf5_dataset

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Script that generates a dataset in HDF5 format for GPT Models.
"""

import importlib
import logging
import os
import sys
from multiprocessing import cpu_count
from pathlib import Path

sys.path.append(os.path.join(os.path.dirname(__file__), "../../../../.."))
from modelzoo.common.input.utils import check_and_create_output_dirs
from modelzoo.transformers.data_processing.scripts.hdf5_preprocessing.utils import (
    dump_args,
    dump_result,
    get_params,
    get_verification_args,
    process_dataset,
    verify_saved_hdf5_files_mp,
)
from modelzoo.transformers.data_processing.scripts.utils import get_files

from modelzoo.transformers.data_processing.scripts.hdf5_preprocessing.hdf5_dataset_preprocessors import (  # noqa
    LMDataPreprocessor,
    SummarizationPreprocessor,
)

logging.basicConfig()
logger = logging.getLogger(__file__)
logger.setLevel(logging.INFO)


[docs]def main(): """Main function for execution.""" params = get_params(desc="Create HDF5 dataset for language models") args = get_verification_args(params) output_dir = params["setup"].get("output_dir", "./data_dir/") if not params["processing"].get("resume_from_checkpoint", False): check_and_create_output_dirs(output_dir, filetype="h5") logger.info(f"\nWriting data to {output_dir}.") json_params_file = os.path.join(output_dir, "data_params.json") dump_args(params, json_params_file) metadata_files = params["setup"].pop("metadata_files", None) if metadata_files: metadata_files = metadata_files.split(",") input_dir = params["setup"].pop("input_dir", None) input_files = get_files(input_dir=input_dir, metadata_files=metadata_files) processes = params["setup"].pop("processes", 0) if processes == 0: processes = cpu_count() ds_processor = params["setup"].pop( "dataset_processor", "LMDataPreprocessor" ) module_name = params["setup"].pop("module", None) if module_name: module = importlib.import_module(module_name) dataset_processor = getattr(module, ds_processor)(params) else: dataset_processor = getattr(sys.modules[__name__], ds_processor)(params) unused_params = [ key for key in params["setup"].keys() if key != "output_dir" ] if unused_params: logger.warning( "The following setup params are unused: " + ", ".join(unused_params) ) results = process_dataset(input_files, dataset_processor, processes) dump_result( results, json_params_file, dataset_processor.eos_id, dataset_processor.pad_id, dataset_processor.get_vocab_size(), ) logger.info( f"\nFinished writing data to {output_dir}." f" Runtime arguments and outputs can be found at {json_params_file}." ) logger.info(f"Verifying the converted dataset at: {output_dir}") output_files = list(Path(output_dir).glob("*.h5")) verify_saved_hdf5_files_mp(output_files, args) logger.info("Done verifying the converted dataset.")
if __name__ == "__main__": main()