Source code for common.pytorch.optim.SGD

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch

from modelzoo.common.pytorch.optim.CSOptimizer import CSOptimizer


[docs]class SGD(CSOptimizer): """ SGD optimizer implemented to conform to execution within the constraints of the Cerebras WSE, including pre-initializing optimizer state """
[docs] def __init__( self, params, lr, momentum=0, dampening=0, weight_decay=0, nesterov=False, maximize=False, ): if lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if momentum < 0.0: raise ValueError("Invalid momentum value: {}".format(momentum)) if weight_decay < 0.0: raise ValueError( "Invalid weight_decay value: {}".format(weight_decay) ) if nesterov and (momentum <= 0 or dampening != 0): raise ValueError( f"Nesterov momentum requires a `momentum` and zero `dampening`. " f"`momentum` was {momentum} and `dampening` was {dampening}." ) defaults = dict( lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, maximize=maximize, ) super(SGD, self).__init__(params, defaults)
[docs] def state_names_to_sparsify(self): return ["momentum_buffer"]
[docs] def preinitialize(self): """ Allocates tensors for the optimizer state to allow direct compilation of the model before the first step. """ for group in self.param_groups: for p in group['params']: if group['momentum'] != 0: self.state[p]["momentum_buffer"] = torch.zeros_like( p, device="cpu" ).to(p.device)
@torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: lr = group["lr"] weight_decay = group["weight_decay"] momentum = group['momentum'] dampening = group["dampening"] nesterov = group["nesterov"] maximize = group["maximize"] for p in group["params"]: if p.grad is None: continue grad = p.grad if grad.is_sparse: raise RuntimeError("SGD does not support sparse gradients.") grad = grad if not maximize else -grad if weight_decay != 0: grad = grad.add(p, alpha=weight_decay) if momentum != 0: buf = self.state[p]["momentum_buffer"] buf.mul_(momentum).add_(grad, alpha=1.0 - dampening) if nesterov: grad.add_(buf, alpha=momentum) else: grad = buf p.add_(-lr * grad) return loss