Source code for common.pytorch.optim.Adamax

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Iterable, Tuple

import torch
from torch import nn

from modelzoo.common.pytorch.optim.CSOptimizer import CSOptimizer


[docs]class Adamax(CSOptimizer):
[docs] def __init__( self, params: Iterable[nn.parameter.Parameter], lr: float = 1e-3, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-6, weight_decay: float = 0.0, maximize: bool = False, ): if lr < 0.0: raise ValueError(f"Invalid learning rate: {lr} - should be >= 0.0") if not 0.0 <= betas[0] < 1.0: raise ValueError( f"Invalid beta parameter: {betas[0]} - should be in [0.0, 1.0)" ) if not 0.0 <= betas[1] < 1.0: raise ValueError( f"Invalid beta parameter: {betas[1]} - should be in [0.0, 1.0)" ) if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps} - should be >= 0.0") defaults = dict( lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, maximize=maximize, ) super().__init__(params, defaults)
[docs] def state_names_to_sparsify(self): # Only return state names which can be maskable by sparsity optimizer: # those with the same shape as their corresponding parameter return ["exp_avg", "exp_inf"]
[docs] def preinitialize(self): """ Allocates tensors for the optimizer state to allow direct compilation of the model before the first step. """ for group in self.param_groups: for p in group["params"]: state = self.state[p] # State initialization # Exponential moving average of gradient values state["exp_avg"] = torch.zeros_like(p, device="cpu").to( p.device ) # Exponential moving average of infinity norm state["exp_inf"] = torch.zeros_like(p, device="cpu").to( p.device ) beta1, _ = group["betas"] # beta1 ^ step, initialized for used on step 1 state["beta1_power"] = torch.tensor(beta1).to(p.device)
@torch.no_grad() def step(self, closure=None): """ Performs a single optimization step. Arguments: closure (:obj:`Callable`, `optional`): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group["params"]: if p.grad is None: continue if p.grad.is_sparse: raise RuntimeError( 'Adamax does not support sparse gradients' ) maximize = group["maximize"] grad = p.grad grad = grad if not maximize else -grad if group["weight_decay"] > 0.0: grad = grad.add(p, alpha=group["weight_decay"]) state = self.state[p] exp_avg, exp_inf = state["exp_avg"], state["exp_inf"] beta1, beta2 = group["betas"] # Decay the first and second moment running average coefficient # In-place operations to update the averages at the same time. exp_avg.mul_(beta1).add_(grad, alpha=1.0 - beta1) torch.maximum( exp_inf.mul(beta2), grad.abs().add_(group["eps"]), out=exp_inf, ) update = exp_avg / exp_inf bias_correction = 1.0 - state["beta1_power"] update.div_(bias_correction) # Update `beta1^step` for the next step. state["beta1_power"] *= beta1 # Scale the update by the learning rate. update *= group["lr"] # Finally, update the weight data. p.sub_(update) return loss