# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import re
from typing import Tuple
import torch
from modelzoo.common.pytorch.model_utils.checkpoint_converters.base_converter import (
BaseCheckpointConverter_HF_CS,
BaseConfigConverter,
BaseConfigConverter_HF_CS,
ConfigConversionError,
ConversionRule,
EquivalentSubkey,
FormatVersions,
)
[docs]class Converter_GPTJ_Attention_HF_CS17(BaseCheckpointConverter_HF_CS):
[docs] def __init__(self):
super().__init__()
self.rules = [
ConversionRule(
[
EquivalentSubkey("q_proj", "proj_q_dense_layer"),
"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
EquivalentSubkey("k_proj", "proj_k_dense_layer"),
"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
EquivalentSubkey("v_proj", "proj_v_dense_layer"),
"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
EquivalentSubkey("out_proj", "proj_output_dense_layer"),
"\.(?:weight|bias)",
],
# This is a hacky way to initialize bias and masked_bias when converting from CS to Huggingface
# However, based on huggingface implementation this is unavoidable in order to initialize
# attn.bias and attn.masked_bias, which we intiantiate when we capture the `out_proj` key
action=self.replace_or_fill_masked_bias,
),
]
[docs] @staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return None
[docs] def replace_or_fill_masked_bias(
self,
old_key,
new_key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
):
# copy between `out_proj` and `proj_output_dense_layer`
new_state_dict[new_key] = old_state_dict[old_key]
# take care of bias and masked_bias
if from_index == 1:
max_positions = action_fn_args["configs"][1]["model"][
"max_position_embeddings"
]
bias_key = re.sub("out_proj\.weight", "bias", new_key)
masked_bias_key = re.sub("out_proj\.weight", "masked_bias", new_key)
new_state_dict[bias_key] = torch.tril(
torch.ones((max_positions, max_positions), dtype=torch.uint8)
).view(1, 1, max_positions, max_positions)
new_state_dict[masked_bias_key] = torch.tensor(-1e9)
[docs]class Converter_GPTJ_Headless_HF_CS17(BaseCheckpointConverter_HF_CS):
[docs] def __init__(self):
super().__init__()
self.rules = [
# word embeddings
ConversionRule(
[
EquivalentSubkey("wte", "embedding_layer.word_embeddings"),
"\.(?:weight|bias)",
],
action=self.replaceKey,
),
# final layer norm
ConversionRule(
[
EquivalentSubkey("ln_f", "transformer_decoder.norm"),
"\.(?:weight|bias)",
],
action=self.replace_final_norm,
),
# attention
ConversionRule(
[
EquivalentSubkey("h", "transformer_decoder.layers"),
"\.\d+\.",
EquivalentSubkey("attn.", "self_attn."),
Converter_GPTJ_Attention_HF_CS17(),
],
action=None,
),
# attention norm
ConversionRule(
[
EquivalentSubkey("h", "transformer_decoder.layers"),
"\.\d+\.",
EquivalentSubkey("ln_1", "norm1"),
"\.(?:weight|bias)",
],
action=self.replaceKey,
),
# norm3 layers should be set to None if they exist:
ConversionRule(
["transformer_decoder.layers\.\d+\.norm3\.(?:weight|bias)",],
exists="right",
action=BaseConfigConverter.assert_factory_fn(1, None),
),
# intermediate ffn
ConversionRule(
[
EquivalentSubkey("h", "transformer_decoder.layers"),
"\.\d+\.",
EquivalentSubkey("mlp.fc_in", "ffn.ffn.0.linear_layer"),
"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(
[
EquivalentSubkey("h", "transformer_decoder.layers"),
"\.\d+\.",
EquivalentSubkey("mlp.fc_out", "ffn.ffn.1.linear_layer"),
"\.(?:weight|bias)",
],
action=self.replaceKey,
),
ConversionRule(["lm_head\.(?:weight|bias)"], exists="right"),
ConversionRule(["ln_f\.(?:weight|bias)"], exists="right"),
ConversionRule(["h\.\d+\.attn\.(?:masked_bias|bias)",]),
]
[docs] def replace_final_norm(
self,
old_key,
new_key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
):
new_state_dict[new_key] = old_state_dict[old_key]
# CS 1.7 has both "ln_f" and "transformer_decoder.norm"
# we need to copy the original ("ln_f") too:
if from_index == 0:
ln_f_key = re.sub("transformer_decoder\.norm\.", "ln_f.", new_key)
new_state_dict[ln_f_key] = old_state_dict[old_key]
[docs] def pre_model_convert(
self,
old_state_dict,
new_state_dict,
configs,
from_index,
drop_unmatched_keys,
):
if from_index == 0:
logging.warning(
"{} GPTJ has a language model head (lm_head) "
"while {} GPTJModel does not. Initializing lm_head to default."
)
# Manually tie weights
if from_index == 1 and configs[1]["model"]["share_embedding_weights"]:
if (
old_state_dict.get("embedding_layer.word_embeddings.weight", 0)
is None
):
old_state_dict[
"embedding_layer.word_embeddings.weight"
] = old_state_dict["lm_head.weight"]
[docs] def post_model_convert(
self,
old_state_dict,
new_state_dict,
configs,
from_index,
drop_unmatched_keys,
):
if from_index == 0:
# We are converting from HF GPTJModel (which is headless) -> CS GPTJModel (which has a head)
# We need to create 'lm_head' and init to default values
hf_config = configs[0]
cs_config = configs[1]
use_bias_in_output = cs_config["model"].get(
"use_bias_in_output", False
)
vocab_size = cs_config["model"]["vocab_size"]
embed_dim = cs_config["model"]["hidden_size"]
if hf_config["tie_word_embeddings"]:
lm_head_weight = old_state_dict['wte.weight']
else:
lm_head_weight = torch.zeros((vocab_size, embed_dim))
lm_head_weight.normal_(mean=0.0, std=0.02)
new_state_dict["lm_head.weight"] = lm_head_weight
if use_bias_in_output:
lm_head_bias = torch.zeros(vocab_size)
new_state_dict["lm_head.bias"] = lm_head_bias
[docs] @classmethod
def converter_note(cls) -> str:
return (
"{} GPTJModel <-> {} GPTJModel(with head)\n"
"The HF model doesn't contain a language model head while the CS "
"one does. When converting to CS, the exported checkpoint will "
"contain a language model head initialized to default random "
"values. When converting to HF, the language model head will be "
"dropped."
).format(cls.formats()[0], cls.formats()[1])
[docs] @staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_GPTJModel_HF_CS17
[docs]class Converter_GPTJ_Headless_HF_CS18(Converter_GPTJ_Headless_HF_CS17):
[docs] def __init__(self):
super().__init__()
self.rules = [
# Catch checkpoints from Pytorch 2.0 API
ConversionRule([Converter_GPTJ_Headless_HF_CS17(),], action=None,),
# Catch checkpoints from depricated PyTorchBaseModel
ConversionRule(
[
EquivalentSubkey("", "model."),
Converter_GPTJ_Headless_HF_CS17(),
],
action=None,
),
]
[docs] @classmethod
def converter_note(cls) -> str:
return (
"{} GPTJModel <-> {} GPTJModel(with head)\n"
"The HF model doesn't contain a language model head while the CS "
"one does. When converting to CS, the exported checkpoint will "
"contain a language model head initialized to default random "
"values. When converting to HF, the language model head will be "
"dropped."
).format(cls.formats()[0], cls.formats()[1])
[docs] @staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_GPTJModel_HF_CS18
[docs]class Converter_GPTJ_LMHeadModel_HF_CS17(BaseCheckpointConverter_HF_CS):
[docs] def __init__(self):
super().__init__()
self.rules = [
ConversionRule(
["lm_head\.(?:weight|bias)"], action=self.replaceKey,
),
ConversionRule(
[
EquivalentSubkey("transformer.", ""),
Converter_GPTJ_Headless_HF_CS17(),
],
action=None,
),
]
[docs] def pre_model_convert(
self,
old_state_dict,
new_state_dict,
configs,
from_index,
drop_unmatched_keys,
):
# Manually tie weights
if from_index == 1 and configs[1]["model"]["share_embedding_weights"]:
if (
old_state_dict.get("embedding_layer.word_embeddings.weight", 0)
is None
):
old_state_dict[
"embedding_layer.word_embeddings.weight"
] = old_state_dict["lm_head.weight"]
[docs] @classmethod
def converter_note(cls) -> str:
return "{} GPTJForCausalLM <-> {} GPTJModel(with head)".format(
cls.formats()[0], cls.formats()[1]
)
[docs] @staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_GPTJModel_HF_CS17
[docs]class Converter_GPTJ_LMHeadModel_HF_CS18(BaseCheckpointConverter_HF_CS):
[docs] def __init__(self):
super().__init__()
self.rules = [
# Catch checkpoints from Pytorch 2.0 API
ConversionRule(
[Converter_GPTJ_LMHeadModel_HF_CS17(),], action=None,
),
# Catch checkpoints from depricated PyTorchBaseModel
ConversionRule(
[
EquivalentSubkey("", "model."),
Converter_GPTJ_LMHeadModel_HF_CS17(),
],
action=None,
),
]
[docs] @classmethod
def converter_note(cls) -> str:
return "{} GPTJForCausalLM <-> {} GPTJModel(with head)".format(
cls.formats()[0], cls.formats()[1]
)
[docs] @staticmethod
def get_config_converter_class() -> BaseConfigConverter:
return ConfigConverter_GPTJModel_HF_CS18
[docs]class ConfigConverter_GPTJModel_HF_CS17(BaseConfigConverter_HF_CS):
[docs] def __init__(self):
super().__init__()
self.rules = [
# Embedding
ConversionRule(["vocab_size"], action=self.replaceKey),
ConversionRule(["rotary_dim"], action=self.replaceKey),
ConversionRule(
[EquivalentSubkey("rotary", "position_embedding_type")],
exists="right",
action=self.convert_position_embedding_type,
),
ConversionRule(
["use_position_embedding"],
exists="right",
action=BaseConfigConverter.assert_factory_fn(1, True),
),
ConversionRule(
[EquivalentSubkey("embd_pdrop", "embedding_dropout_rate")],
action=self.replaceKey,
),
ConversionRule(
[
EquivalentSubkey(
"tie_word_embeddings", "share_embedding_weights"
)
],
action=self.replaceKey,
),
# Decoder Block
ConversionRule(
[EquivalentSubkey("n_embd", "hidden_size")],
action=self.replaceKey,
),
ConversionRule(
[EquivalentSubkey("n_head", "num_heads")],
action=self.replaceKey,
),
ConversionRule(
[EquivalentSubkey("n_layer", "num_hidden_layers")],
action=self.replaceKey,
),
ConversionRule(
[EquivalentSubkey("n_positions", "max_position_embeddings")],
action=self.replaceKey,
),
ConversionRule(
["scale_attn_weights"],
action=BaseConfigConverter.assert_factory_fn(0, True),
),
ConversionRule(
["attention_type"],
action=BaseConfigConverter.assert_factory_fn(
1, "scaled_dot_product"
),
),
ConversionRule(
["use_projection_bias_in_attention"],
action=BaseConfigConverter.assert_factory_fn(1, False),
),
ConversionRule(
["use_ffn_bias_in_attention"],
exists="right",
action=BaseConfigConverter.assert_factory_fn(1, False),
),
ConversionRule(
["use_ffn_bias"],
exists="right",
action=BaseConfigConverter.assert_factory_fn(1, True),
),
ConversionRule(
[EquivalentSubkey("n_inner", "filter_size")],
action=self.replaceKey,
),
ConversionRule(
[EquivalentSubkey("activation_function", "nonlinearity")],
action=self.replaceKey,
),
ConversionRule(
[EquivalentSubkey("attn_pdrop", "attention_dropout_rate")],
action=self.replaceKey,
),
ConversionRule(
[EquivalentSubkey("resid_pdrop", "residual_dropout_rate")],
action=self.replaceKey,
),
ConversionRule(["layer_norm_epsilon"], action=self.replaceKey,),
ConversionRule(["use_bias_in_output"], action=self.replaceKey,),
ConversionRule(["initializer_range"], action=self.replaceKey),
ConversionRule(
["embedding_layer_norm"],
action=BaseConfigConverter.assert_factory_fn(1, False),
),
ConversionRule(
["fixed_sparse_attention"],
action=BaseConfigConverter.assert_factory_fn(1, None),
),
ConversionRule(
["norm_first"],
action=BaseConfigConverter.assert_factory_fn(1, True),
),
ConversionRule(
["use_ff_layer1_dropout"],
action=BaseConfigConverter.assert_factory_fn(1, False),
),
]
[docs] def convert_position_embedding_type(
self,
old_key,
new_key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
):
if from_index == 0:
if old_state_dict[old_key] != True:
raise ConfigConversionError(
"HF GPT-J must use rotary embeddings, but got {}={}".format(
old_key, old_state_dict[old_key]
)
)
new_state_dict[new_key] = "rotary"
else:
if old_state_dict[old_key] != "rotary":
raise ConfigConversionError(
"CS GPT-J must use rotary embeddings, but got {}={}".format(
old_key, old_state_dict[old_key]
)
)
new_state_dict[new_key] = True
[docs] def convert_attention_type(
self,
old_key,
new_key,
old_state_dict,
new_state_dict,
from_index,
action_fn_args,
):
if from_index == 0:
new_state_dict[new_key] = (
"scaled_dot_product"
if old_state_dict[old_key]
else "dot_product"
)
else:
assert (
old_state_dict[old_key] == "scaled_dot_product"
or old_state_dict[old_key] == "dot_product"
)
new_state_dict[new_key] = old_state_dict[old_key].startswith(
"scaled_"
)
[docs] def pre_config_convert(
self, config, from_index,
):
config = super().pre_config_convert(config, from_index)
defaults = [
{
"vocab_size": 50400,
"n_positions": 2048,
"n_embd": 4096,
"n_layer": 28,
"n_head": 16,
"rotary_dim": 64,
"activation_function": "gelu_new",
"resid_pdrop": 0.1,
"embd_pdrop": 0.1,
"attn_pdrop": 0.1,
"initializer_range": 0.02,
"layer_norm_epsilon": 1e-5,
"tie_word_embeddings": False,
},
{
"max_position_embeddings": 1024,
"embedding_dropout_rate": 0.1,
"share_embedding_weights": True,
"residual_dropout_rate": 0.1,
"nonlinearity": "gelu",
"layer_norm_epsilon": 1.0e-5,
"use_ffn_bias": False,
"use_untied_layer_norm": False,
"attention_dropout_rate": 0.1,
"use_projection_bias_in_attention": True,
"use_ffn_bias_in_attention": True,
"initializer_range": 0.02,
"use_bias_in_output": False,
"norm_first": True,
},
]
# Apply defaults
for key in defaults[from_index]:
if key not in config:
config[key] = defaults[from_index][key]
if from_index == 0:
if "n_inner" not in config or config["n_inner"] is None:
config["n_inner"] = 4 * config["n_embd"]
return config
[docs] def post_config_convert(
self,
original_config,
old_config,
new_config,
from_index,
drop_unmatched_keys,
):
if from_index == 0:
new_config["use_ffn_bias_in_attention"] = False
new_config["use_projection_bias_in_attention"] = False
new_config["use_ffn_bias"] = True
new_config["use_bias_in_output"] = True
if "attention_type" not in new_config:
new_config["attention_type"] = "scaled_dot_product"
return super().post_config_convert(
original_config,
old_config,
new_config,
from_index,
drop_unmatched_keys,
)
[docs]class ConfigConverter_GPTJModel_HF_CS18(ConfigConverter_GPTJModel_HF_CS17):
[docs] def __init__(self):
super().__init__()