Source code for common.pytorch.metrics.mean_iou

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
mean Intersection-Over-Union (mIOU) metric for PyTorch.
Calculate per-step mean Intersection-Over-Union (mIOU).
"""
from typing import Optional

import torch

from modelzoo.common.pytorch import cb_model as cm
from modelzoo.common.pytorch.metrics.cb_metric import CBMetric, DeviceOutputs
from modelzoo.common.pytorch.metrics.metric_utils import (
    compute_confusion_matrix,
    divide_no_nan,
)


[docs]def compute_helper(confusion_matrix): """Returns the meanIOU""" sum_over_row = torch.sum(confusion_matrix, 0, dtype=torch.float) sum_over_col = torch.sum(confusion_matrix, 1, dtype=torch.float) # TODO: workaround for SW-76827 # cm_diag = torch.diagonal(confusion_matrix).to(dtype=torch.float) wgth_id = torch.eye( confusion_matrix.shape[0], device=confusion_matrix.device ) cm_diag = (wgth_id * confusion_matrix).sum(axis=-1, dtype=torch.float) denominator = sum_over_row + sum_over_col - cm_diag # The mean is only computed over classes that appear in the # label or prediction tensor. If the denominator is 0, we need to # ignore the class. num_valid_entries = torch.sum(torch.ne(denominator, 0).to(torch.float)) # If the value of the denominator is 0, set it to 1 to avoid # zero division. denominator = torch.where( denominator > 0, denominator, torch.ones_like(denominator) ) iou = divide_no_nan(cm_diag, denominator) # If the number of valid entries is 0 (no classes) we return 0. mean_iou = torch.where( num_valid_entries > 0.0, torch.sum(iou) / num_valid_entries, torch.tensor(0, dtype=torch.float, device=iou.device), ) return mean_iou
class _PipelineMeanIOUMetric(CBMetric): """ Mean Intersection-Over-Union is a common evaluation metric for semantic image segmentation, which first computes the IOU for each semantic class and then computes the average over classes. IOU is defined as follows: IOU = true_positive / (true_positive + false_positive + false_negative). The predictions are accumulated in a confusion matrix, weighted by `weights`, and mIOU is then calculated from it. For estimation of the metric over a stream of data, the function creates an `update_op` operation that updates these variables and returns the `mean_iou`. If `weights` is `None`, weights default to 1. Use weights of 0 to mask values. Args: labels: A `Tensor` of ground truth labels of type `int32` or `int64`. predictions: A `Tensor` of prediction results for semantic labels, of type `int32` or `int64`. num_classes: The possible number of labels the prediction task can have. This value must be provided, since a confusion matrix of dimension = [num_classes, num_classes] will be allocated. weights: Optional `Tensor` whose rank is either 0, or the same rank as `labels`, and must be broadcastable to `labels` (i.e., all dimensions must be either `1`, or the same as the corresponding `labels` dimension). name: Optional `string` which indicates name of the metric. If None or empty string, it defaults to the name of the class. Returns: mean_iou: Value representing the mean intersection-over-union. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions` """ def __init__(self, num_classes, name: Optional[str] = None): self.num_classes = num_classes super().__init__(name=name) def init_state(self): self.reset_state() def update_on_host(self, labels, predictions, weights=None): if labels.shape != predictions.shape: raise ValueError( "`labels` and `predictions` have mismatched shapes. " f"Their shapes were {labels.shape} and {predictions.shape} respectively." ) if weights is not None: if weights.shape != labels.shape: raise ValueError( f"`labels`={labels.shape} and ", f"`weights`={weights.shape} have mismatched shapes", ) weights = weights.detach() labels = labels.detach() predictions = predictions.detach() self.confusion_matrix += compute_confusion_matrix( labels=labels, predictions=predictions, weights=weights, num_classes=self.num_classes, on_device=False, ) def reset_state(self): # rows -> groundtruth labels # cols -> predicted labels self.confusion_matrix = torch.zeros( (self.num_classes, self.num_classes), dtype=torch.float32 ) def compute(self): """Returns the meanIOU as a float.""" return float(compute_helper(self.confusion_matrix)) class _WSMeanIOUMetric(CBMetric): def __init__(self, num_classes, name: Optional[str] = None): self.num_classes = num_classes super().__init__(name=name) def init_state(self): self.reset_state() def update_on_device(self, labels, predictions, weights=None): if labels.shape != predictions.shape: raise ValueError( f"`labels` and `predictions` have mismatched shapes. " f"Their shapes were {labels.shape} and {predictions.shape} respectively." ) if weights is not None: if weights.shape != labels.shape: raise ValueError( f"`labels`={labels.shape} and ", f"`weights`={weights.shape} have mismatched shapes", ) weights = weights.detach() labels = labels.detach() predictions = predictions.detach() confusion_matrix = compute_confusion_matrix( labels=labels, predictions=predictions, num_classes=self.num_classes, weights=weights, on_device=True, ) self.confusion_matrix.add_(confusion_matrix) mean_iou = compute_helper(self.confusion_matrix) return DeviceOutputs(args=[mean_iou.to(predictions.dtype)]) def update_on_host(self, result): self.result = result def compute(self): """Returns the computed accuracy as a float.""" return float(self.result) def reset_state(self): self.confusion_matrix = torch.zeros( (self.num_classes, self.num_classes), dtype=torch.float32 ).to(cm.device()) def on_device_state_dict(self): return { "confusion_matrix": self.confusion_matrix, } # Create a factory for creating a metric depending on execution strategy. MeanIOUMetric = CBMetric.create_metric_impl_factory( pipeline_metric_cls=_PipelineMeanIOUMetric, ws_metric_cls=_WSMeanIOUMetric, )