Source code for common.pytorch.layers.TransformerDecoderLayer

# Copyright 2022 Cerebras Systems.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Adapted from https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/transformer.py
"""

from typing import Callable, Optional, Tuple, Type, Union

import torch.nn as nn
from torch import Tensor
from torch.nn import Dropout, LayerNorm

from modelzoo.common.pytorch.layers.AttentionHelper import get_attention_module
from modelzoo.common.pytorch.layers.FeedForwardNetwork import FeedForwardNetwork
from modelzoo.common.pytorch.model_utils.RotaryPositionEmbeddingHelper import (
    RotaryPositionEmbeddingHelper,
)

SelfAttnKV = Tuple[Tensor, Tensor]
CrossAttnKV = Tuple[Tensor, Tensor]
SelfAndCrossAttnKV = Tuple[Tensor, Tensor, Tensor, Tensor]


[docs]class TransformerDecoderLayer(nn.Module): r""" TransformerDecoderLayer is made up of self-attn, multihead-attn and feedforward network. This standard decoder layer is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application. Args: d_model: the number of expected features in the input (required). nhead: the number of heads in the multihead-attention models (required). dim_feedforward: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). activation: the activation function of the intermediate layer, can be a string ("relu" or "gelu") or a unary callable. Default: gelu layer_norm_eps: the eps value in layer normalization components (default=1e-5). batch_first: If ``True``, then the input and output tensors are provided as (batch, seq, feature). Default: ``False`` (seq, batch, feature). norm_layer: the normalization class that will be used before/after FF layers (default=nn.LayerNorm) norm_first: if ``True``, layer norm is done prior to self attention, multihead attention and feedforward operations, respectively. Otherwise it's done after. Default: ``False`` (after). attention_dropout_rate: Attention dropout rate. If None, defaults to dropout. attention_softmax_fp32: Use FP32 softmax in attention block. use_projection_bias_in_attention: Add bias to Q,K,V projections in the Attention layer. Defaults to False. attention_type: Should be in ["scaled_dot_product", "dot_product"] scale_qk_dot_by_d (bool): If ``True`` scales QK^T dot product by d(=hidden/d_head) instead of sqrt(d). attention_inner_dim (int): Number of output units in attention query/key/value projection. Defaults to d_model add_cross_attention: If ``True``, adds cross-attention layer between encoder/decoder, otherwise, only self-attention is used in the decoder (GPT-style models should set to ``False``) use_ffn_bias_in_attention: Add bias in the concluding FFN in the Attention layer. Defaults to False. use_ffn_bias: Add bias in all dense layers of the decoder's ffn sublayer attention_initializer: Attention layer initializer. Defaults to "xavier_uniform". attention_q_initializer: Query projection kernel initializer. If not specified, the query will be initialized via ``attention_initializer`` attention_output_layer_initializer: attention output layer projection initializer. If not specified, the output will be initialized via ``attention_initializer`` ffn_initializer: FFN layer initializer. Defaults to "xavier_uniform". ffn_output_layer_initializer: If not None, initialize the last FFN layer with this initializer. Defaults to None. use_ff_layer1_dropout: If ``True``, dropout will be enabled after the first feed forward layer. Default: True use_ff_layer2_dropout = If ``True``, dropout will be enabled after the second feed forward layer. Default: True ffn_dropout_rate: Controls dropout rate of FF's first layer. If None, defaults to dropout. Examples: >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8, batch_first=True) >>> memory = torch.rand(32, 10, 512) >>> tgt = torch.rand(32, 20, 512) >>> out = decoder_layer(tgt, memory) """
[docs] def __init__( self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1, activation: Union[str, Callable[[Tensor], Tensor]] = "gelu", layer_norm_eps: float = 1e-5, batch_first: bool = True, norm_layer: Type[nn.Module] = LayerNorm, norm_first: bool = False, attention_module: Union[str, nn.Module] = "aiayn_attention", extra_attention_params={}, device=None, add_cross_attention: bool = True, attention_dropout_rate: Optional[float] = None, attention_softmax_fp32: Optional[bool] = True, attention_type="scaled_dot_product", scale_qk_dot_by_d=False, ffn_scale_glu_initialization=False, attention_inner_dim=None, use_projection_bias_in_attention=False, use_ffn_bias_in_attention=False, use_ffn_bias=False, attention_initializer="xavier_uniform", attention_q_initializer=None, attention_output_layer_initializer=None, ffn_initializer="xavier_uniform", ffn_output_layer_initializer=None, use_ff_layer1_dropout: bool = True, use_ff_layer2_dropout: bool = True, ffn_dropout_rate: Optional[float] = None, ) -> None: super(TransformerDecoderLayer, self).__init__() assert batch_first, "Currently, only batch_first=True is supported" self.add_cross_attention = add_cross_attention if attention_dropout_rate is None: attention_dropout_rate = dropout AttentionModule = get_attention_module( attention_module, extra_attention_params ) self.self_attn = AttentionModule( d_model, nhead, inner_dim=attention_inner_dim, dropout=attention_dropout_rate, batch_first=batch_first, attention_type=attention_type, scale_qk_dot_by_d=scale_qk_dot_by_d, softmax_dtype_fp32=attention_softmax_fp32, use_projection_bias=use_projection_bias_in_attention, use_ffn_bias=use_ffn_bias_in_attention, attention_initializer=attention_initializer, attention_q_initializer=attention_q_initializer, output_layer_initializer=attention_output_layer_initializer, device=device, **extra_attention_params, ) self.norm_first = norm_first self.norm1 = norm_layer(d_model, eps=layer_norm_eps, device=device,) self.dropout1 = Dropout(dropout) self.norm3 = norm_layer(d_model, eps=layer_norm_eps, device=device,) if self.add_cross_attention: self.multihead_attn = AttentionModule( d_model, nhead, inner_dim=attention_inner_dim, dropout=attention_dropout_rate, batch_first=batch_first, attention_type=attention_type, softmax_dtype_fp32=attention_softmax_fp32, use_projection_bias=use_projection_bias_in_attention, use_ffn_bias=use_ffn_bias_in_attention, attention_initializer=attention_initializer, attention_q_initializer=attention_q_initializer, output_layer_initializer=attention_output_layer_initializer, device=device, **extra_attention_params, ) self.norm2 = norm_layer(d_model, eps=layer_norm_eps, device=device,) self.dropout2 = Dropout(dropout) if ffn_dropout_rate is None: ffn_dropout_rate = dropout self.ffn = FeedForwardNetwork( input_unit=d_model, layers_units=[dim_feedforward, d_model], layers_activation=[activation, None], layers_dropout_rates=[ ffn_dropout_rate if use_ff_layer1_dropout else None, dropout if use_ff_layer2_dropout else None, ], use_bias=use_ffn_bias, kernel_initializer=ffn_initializer, output_layer_initializer=ffn_output_layer_initializer, scale_glu_initialization=ffn_scale_glu_initialization, bias_initializer="zeros", device=device, ) self.__reset_parameters()
[docs] def reset_parameters(self): self.__reset_parameters()
def __reset_parameters(self): self.self_attn.reset_parameters() self.ffn.reset_parameters() if hasattr(self.norm1, 'bias'): self.norm1.bias.data.zero_() self.norm1.weight.data.fill_(1.0) if self.norm3 is not None: if hasattr(self.norm3, 'bias'): self.norm3.bias.data.zero_() self.norm3.weight.data.fill_(1.0) if self.add_cross_attention: self.multihead_attn.reset_parameters() if hasattr(self.norm2, 'bias'): self.norm2.bias.data.zero_() self.norm2.weight.data.fill_(1.0)
[docs] def forward( self, tgt: Tensor, memory: Optional[Tensor] = None, tgt_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, rotary_position_embedding_helper: Optional[ RotaryPositionEmbeddingHelper ] = None, past_kv: Optional[Union[SelfAttnKV, SelfAndCrossAttnKV]] = None, cache_present_kv: bool = False, self_attn_position_bias: Optional[Tensor] = None, cross_attn_position_bias: Optional[Tensor] = None, **extra_args, ) -> Union[Tensor, Tuple[Tensor, Union[SelfAttnKV, SelfAndCrossAttnKV]]]: r"""Pass the inputs (and mask) through the decoder layer. Args: tgt: the sequence to the decoder layer (required). memory: the sequence from the last layer of the encoder (required). tgt_mask: the mask for the tgt sequence (optional). memory_mask: the mask for the memory sequence (optional). tgt_key_padding_mask: the mask for the tgt keys per batch (optional). memory_key_padding_mask: the mask for the memory keys per batch (optional). rotary_position_embedding_helper (Optional[RotaryPositionEmbeddingHelper]): A helper class to apply rotary embedding on the input tensor. past_kv: Past keys and values for self attention and (if applicable) cross attention modules. Key/value tensors have shape ``[batch_size, num_heads, seq_length, embed_dim / num_heads]``. (optional). cache_present_kv: Specifies if the present keys and values must be cached and returned. Needed to speed up the computations when the decoder is called within an autoregressive loop. (optional). self_attn_position_bias: the tensor containing position bias to apply in self-attention, can be obtained from relative or alibi position embeddings. Shape: see the docs in Transformer class. """ # see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf assert ( past_kv is None and not cache_present_kv ), "Cannot provide past_kv because inference is not supported yet." x = tgt if self.norm_first: attn1_out = self._sa_block( self.norm1(x), tgt_mask, tgt_key_padding_mask, rotary_position_embedding_helper=rotary_position_embedding_helper, past_kv=past_kv[:2] if past_kv is not None else None, cache_present_kv=cache_present_kv, self_attn_position_bias=self_attn_position_bias, **extra_args, ) x = x + attn1_out[0] if self.add_cross_attention: attn2_out = self._mha_block( self.norm2(x), memory, memory_mask, memory_key_padding_mask, past_kv=past_kv[2:] if past_kv is not None else None, cache_present_kv=cache_present_kv, cross_attn_position_bias=cross_attn_position_bias, **extra_args, ) x = x + attn2_out[0] x = ( x + self.ffn(self.norm3(x)) if self.norm3 is not None else x + self.ffn(x) ) else: attn1_out = self._sa_block( x, tgt_mask, tgt_key_padding_mask, rotary_position_embedding_helper=rotary_position_embedding_helper, past_kv=past_kv[:2] if past_kv is not None else None, cache_present_kv=cache_present_kv, self_attn_position_bias=self_attn_position_bias, **extra_args, ) x = self.norm1(x + attn1_out[0]) if self.add_cross_attention: attn2_out = self._mha_block( x, memory, memory_mask, memory_key_padding_mask, past_kv=past_kv[2:] if past_kv is not None else None, cache_present_kv=cache_present_kv, cross_attn_position_bias=cross_attn_position_bias, **extra_args, ) x = self.norm2(x + attn2_out[0]) x = ( self.norm3(x + self.ffn(x)) if self.norm3 is not None else x + self.ffn(x) ) if not cache_present_kv: return x else: present_kv = ( attn1_out[1] if not self.add_cross_attention else attn1_out[1] + attn2_out[1] ) return x, present_kv
# self-attention block def _sa_block( self, x: Tensor, attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], rotary_position_embedding_helper: Optional[ RotaryPositionEmbeddingHelper ] = None, past_kv: Optional[SelfAttnKV] = None, cache_present_kv: bool = False, self_attn_position_bias: Optional[Tensor] = None, **extra_args, ) -> Tensor: attn_out = self.self_attn( x, x, x, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=False, rotary_position_embedding_helper=rotary_position_embedding_helper, past_kv=past_kv, cache_present_kv=cache_present_kv, position_bias=self_attn_position_bias, **extra_args, ) if cache_present_kv: out, present_kv = attn_out else: out = attn_out out = (self.dropout1(out),) if cache_present_kv: out += (present_kv,) return out # multihead attention block def _mha_block( self, x: Tensor, mem: Tensor, attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], past_kv: Optional[CrossAttnKV] = None, cache_present_kv: bool = False, cross_attn_position_bias: Optional[Tensor] = None, **extra_args, ) -> Tensor: attn_out = self.multihead_attn( x, mem, mem, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=False, past_kv=past_kv, cache_present_kv=cache_present_kv, past_kv_self_attn=False, position_bias=cross_attn_position_bias, **extra_args, ) if cache_present_kv: x, present_kv = attn_out else: x = attn_out out = (self.dropout2(x),) if cache_present_kv: out += (present_kv,) return out