tf.GraphAttentionLayer module
tf.GraphAttentionLayer module¶
- class tf.GraphAttentionLayer.GraphAttentionLayer(*args: Any, **kwargs: Any)¶
Bases:
modelzoo.common.layers.tf.BaseLayer.BaseLayerImplementation of the Cerebras layer GraphAttention.
Reference:
- Parameters
channels (int) – Output channels of convolution.
activation (callable) – Keras Activation to use.
normalize_output (bool) – Specifies whether to normalize outputs of graph attention. Defaults to
True.use_bias (bool) – Specifies whether to add bias in training. Defaults to
True.num_heads (int) – Number of attention heads to use. Defaults to
1.concat_heads (bool) – Specifies whether to concatenate the output of the attention heads instead of averaging. Defaults to
True.dropout_rate (float) – Internal dropout rate for attention coefficients.
layer_norm_epsilon (float) – Espilon value to be used for layer norm.
neg_inf (float) – Negative infinity for masking. Defaults to
-1e4.leaky_relu_alpha (float) – Negative slope coefficient. Defaults to
0.2.kernel_initializer (str) – Keras kernel initializer to use. Defaults to
"glorot_uniform".bias_initializer (str) – Kernel bias initializer to use. Defaults to
"zeros".attn_kernel_initializer (str) – Keras kernel initializer to use for attention. Defaults to
"glorot_uniform".boundary_casting (bool) – See documentation for
BaseLayer.tf_summary – See documentation for
BaseLayer.**kwargs – Additional keyword arguments for
BaseLayer.
- build(input_shape)¶
- call(inputs, training=True, **kwargs)¶
Apply graph attention to inputs.
- Parameters
inputs (tuple) – Contains adjacency matrix of the shape
[batch_size, num_nodes, num_nodes]and feature matrix of the shape[batch_size, num_nodes, in_dim].**kwargs – Additional keyword arguments for the call argument.
- Returns
Graph Attention layer output of shape
[batch_size, num_nodes, channels].